Normalized defining polynomial
\( x^{18} + 15 x^{16} - 12 x^{15} + 162 x^{14} - 126 x^{13} + 843 x^{12} - 684 x^{11} + 3126 x^{10} - 1718 x^{9} + 4815 x^{8} + 300 x^{7} + 3945 x^{6} + 738 x^{5} + 2124 x^{4} + 984 x^{3} + 504 x^{2} + 96 x + 16 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1372476078024604464225189888=-\,2^{26}\cdot 3^{25}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{7}{18} a^{2} + \frac{1}{9} a + \frac{4}{9}$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{9} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{4} - \frac{7}{18} a^{3} + \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{5} - \frac{7}{18} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{9} a$, $\frac{1}{18} a^{14} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{2}{9} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} + \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{36} a^{15} - \frac{1}{36} a^{13} - \frac{1}{18} a^{10} - \frac{1}{36} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{18} a^{6} - \frac{5}{12} a^{5} - \frac{2}{9} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} + \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{72} a^{16} - \frac{1}{72} a^{14} - \frac{1}{36} a^{12} - \frac{1}{36} a^{11} - \frac{1}{72} a^{10} - \frac{1}{18} a^{9} - \frac{1}{12} a^{8} - \frac{5}{36} a^{7} + \frac{1}{24} a^{6} + \frac{7}{18} a^{5} - \frac{1}{24} a^{4} - \frac{5}{36} a^{3} + \frac{1}{9} a^{2} + \frac{1}{18} a - \frac{4}{9}$, $\frac{1}{210775059321787368} a^{17} + \frac{124396099640525}{105387529660893684} a^{16} + \frac{290249614063251}{23419451035754152} a^{15} - \frac{543218868083455}{35129176553631228} a^{14} - \frac{455786732644043}{105387529660893684} a^{13} - \frac{491626147584011}{105387529660893684} a^{12} - \frac{27978319956827}{70258353107262456} a^{11} + \frac{6788630821791671}{105387529660893684} a^{10} - \frac{8656109597120531}{105387529660893684} a^{9} - \frac{428284155664073}{105387529660893684} a^{8} - \frac{88861488173751925}{210775059321787368} a^{7} + \frac{11867377287515023}{35129176553631228} a^{6} + \frac{4648122352140419}{70258353107262456} a^{5} - \frac{4934482321028507}{52693764830446842} a^{4} - \frac{10344878070656500}{26346882415223421} a^{3} - \frac{1126175775282121}{8782294138407807} a^{2} + \frac{8395804731101401}{26346882415223421} a + \frac{530878911835610}{26346882415223421}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1097937536208845}{105387529660893684} a^{17} - \frac{11625616927711}{70258353107262456} a^{16} + \frac{5520264539438959}{35129176553631228} a^{15} - \frac{26962061984973107}{210775059321787368} a^{14} + \frac{14951091202312900}{8782294138407807} a^{13} - \frac{15880721778335647}{11709725517877076} a^{12} + \frac{235653036595353107}{26346882415223421} a^{11} - \frac{522623394247095685}{70258353107262456} a^{10} + \frac{586874475411311309}{17564588276815614} a^{9} - \frac{2036227389924529745}{105387529660893684} a^{8} + \frac{467183243039216555}{8782294138407807} a^{7} - \frac{19115336396740577}{70258353107262456} a^{6} + \frac{4747406253632993449}{105387529660893684} a^{5} + \frac{399459899913120229}{70258353107262456} a^{4} + \frac{285435385243534383}{11709725517877076} a^{3} + \frac{421837396604080349}{52693764830446842} a^{2} + \frac{106622983802244241}{17564588276815614} a + \frac{10216334086907942}{8782294138407807} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5741990.78627 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3\wr C_2$ (as 18T63):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times S_3\wr C_2$ |
| Character table for $C_2\times S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 9.9.21389063233536.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |