Normalized defining polynomial
\( x^{18} - 6 x^{17} + 165 x^{16} - 734 x^{15} + 11088 x^{14} - 35448 x^{13} + 395818 x^{12} - 823572 x^{11} + 8360469 x^{10} - 9040888 x^{9} + 116128899 x^{8} - 40385748 x^{7} + 1169457127 x^{6} - 76884324 x^{5} + 8399149179 x^{4} - 863213550 x^{3} + 34192143147 x^{2} - 2336691090 x + 64238725531 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13717212741604370463308637102507521799=-\,3^{27}\cdot 7^{12}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2331=3^{2}\cdot 7\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2331}(1,·)$, $\chi_{2331}(1220,·)$, $\chi_{2331}(1222,·)$, $\chi_{2331}(778,·)$, $\chi_{2331}(1997,·)$, $\chi_{2331}(1999,·)$, $\chi_{2331}(1555,·)$, $\chi_{2331}(667,·)$, $\chi_{2331}(221,·)$, $\chi_{2331}(1444,·)$, $\chi_{2331}(998,·)$, $\chi_{2331}(554,·)$, $\chi_{2331}(2221,·)$, $\chi_{2331}(1775,·)$, $\chi_{2331}(1331,·)$, $\chi_{2331}(443,·)$, $\chi_{2331}(2108,·)$, $\chi_{2331}(445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{3}{20} a^{5} + \frac{1}{5} a^{4} - \frac{1}{4} a^{3} - \frac{1}{5} a^{2} + \frac{1}{4} a + \frac{3}{10}$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{8} - \frac{1}{5} a^{7} - \frac{1}{20} a^{6} - \frac{1}{10} a^{5} + \frac{1}{10} a^{4} - \frac{1}{5} a^{3} - \frac{1}{10} a^{2} + \frac{3}{10} a - \frac{7}{20}$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{8} - \frac{3}{20} a^{7} - \frac{1}{4} a^{5} + \frac{3}{20} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{3}{10}$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} - \frac{1}{40} a^{9} + \frac{1}{20} a^{7} - \frac{1}{20} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{9}{40} a^{3} - \frac{1}{10} a^{2} - \frac{1}{8} a + \frac{3}{40}$, $\frac{1}{80} a^{13} - \frac{1}{80} a^{12} - \frac{1}{80} a^{11} - \frac{1}{40} a^{10} + \frac{1}{80} a^{9} + \frac{1}{20} a^{8} + \frac{1}{20} a^{7} + \frac{9}{80} a^{6} - \frac{3}{40} a^{5} - \frac{1}{10} a^{4} - \frac{27}{80} a^{3} + \frac{3}{80} a^{2} - \frac{1}{20} a + \frac{11}{80}$, $\frac{1}{80} a^{14} + \frac{1}{80} a^{11} + \frac{1}{80} a^{10} - \frac{1}{80} a^{9} + \frac{1}{10} a^{8} - \frac{3}{80} a^{7} - \frac{13}{80} a^{6} - \frac{1}{20} a^{5} + \frac{7}{80} a^{4} - \frac{13}{40} a^{3} + \frac{27}{80} a^{2} + \frac{33}{80} a - \frac{31}{80}$, $\frac{1}{121040} a^{15} + \frac{49}{12104} a^{14} - \frac{689}{121040} a^{13} - \frac{1}{1780} a^{12} + \frac{6}{7565} a^{11} + \frac{197}{24208} a^{10} + \frac{671}{121040} a^{9} + \frac{14957}{121040} a^{8} - \frac{6911}{121040} a^{7} + \frac{28709}{121040} a^{6} + \frac{25983}{121040} a^{5} - \frac{797}{3560} a^{4} + \frac{200}{1513} a^{3} - \frac{2967}{15130} a^{2} - \frac{25807}{121040} a - \frac{26623}{121040}$, $\frac{1}{484160} a^{16} + \frac{701}{121040} a^{14} - \frac{137}{48416} a^{13} + \frac{789}{121040} a^{12} - \frac{823}{48416} a^{11} + \frac{1847}{242080} a^{10} + \frac{5731}{242080} a^{9} - \frac{18973}{484160} a^{8} + \frac{2183}{15130} a^{7} + \frac{8503}{121040} a^{6} + \frac{22407}{121040} a^{5} - \frac{112673}{484160} a^{4} + \frac{66991}{242080} a^{3} - \frac{29851}{121040} a^{2} - \frac{519}{60520} a + \frac{22879}{484160}$, $\frac{1}{32815217810020054518913417097588553519592433861454369229174223360} a^{17} + \frac{9798241916327400886667094158265296490973592510455576830669}{32815217810020054518913417097588553519592433861454369229174223360} a^{16} + \frac{15952122761569289370725214387790883544369629399587359227191}{8203804452505013629728354274397138379898108465363592307293555840} a^{15} - \frac{2216545075773250202698591103755363022202062044232041547687157}{16407608905010027259456708548794276759796216930727184614587111680} a^{14} - \frac{58408131480158229114277027646476841476258866491629255049991447}{16407608905010027259456708548794276759796216930727184614587111680} a^{13} + \frac{13713881912022741526260684189363220103467513593495323726814767}{16407608905010027259456708548794276759796216930727184614587111680} a^{12} - \frac{118952633734299138918767510453865431130477906674925966350410591}{8203804452505013629728354274397138379898108465363592307293555840} a^{11} - \frac{93612081199106293295428308104293122345985287797412820882220993}{4101902226252506814864177137198569189949054232681796153646777920} a^{10} - \frac{550695168274601764898772681729159263553278611790551690219652291}{32815217810020054518913417097588553519592433861454369229174223360} a^{9} - \frac{592827801948309293535134640152635369787228879852857360554759261}{6563043562004010903782683419517710703918486772290873845834844672} a^{8} - \frac{32505508225870671142644612865413356184886173861125282291596183}{205095111312625340743208856859928459497452711634089807682338896} a^{7} - \frac{1443258939308755042694042475344174514875555357633087906252186061}{8203804452505013629728354274397138379898108465363592307293555840} a^{6} + \frac{614522322608828692095740461820467932979280623903311801137046703}{6563043562004010903782683419517710703918486772290873845834844672} a^{5} + \frac{249235050397851624545724254636844989317956491962408793008412381}{1930306930001179677583142182211091383505437285967904072304366080} a^{4} - \frac{418209147075765604038978537011834501543362441160853612146919863}{965153465000589838791571091105545691752718642983952036152183040} a^{3} + \frac{403924421893175954367010863089913699210923911144232553031369093}{4101902226252506814864177137198569189949054232681796153646777920} a^{2} + \frac{87476890576833064816755494590054845673564691349766773138143879}{6563043562004010903782683419517710703918486772290873845834844672} a - \frac{6998833480491170407832980810647012147936370198654990441693477049}{32815217810020054518913417097588553519592433861454369229174223360}$
Class group and class number
$C_{2}\times C_{18}\times C_{91656}$, which has order $3299616$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.2, 3.3.3969.1, 6.0.997002999.1, 6.0.3283682031.3, 6.0.2393804200599.8, 6.0.2393804200599.7, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |