Normalized defining polynomial
\( x^{18} - 9 x^{17} + 36 x^{16} - 84 x^{15} + 120 x^{14} - 84 x^{13} - 76 x^{12} + 378 x^{11} - 651 x^{10} + 505 x^{9} + 180 x^{8} - 918 x^{7} + 1180 x^{6} - 954 x^{5} + 570 x^{4} - 266 x^{3} + 96 x^{2} - 24 x + 4 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1371059415023616000000000=-\,2^{26}\cdot 3^{21}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{2} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{90} a^{14} - \frac{7}{90} a^{13} - \frac{1}{45} a^{12} + \frac{13}{90} a^{11} + \frac{1}{45} a^{10} - \frac{41}{90} a^{9} + \frac{2}{9} a^{8} - \frac{7}{18} a^{7} - \frac{1}{90} a^{6} + \frac{7}{45} a^{5} + \frac{11}{45} a^{4} + \frac{16}{45} a^{3} + \frac{17}{45} a^{2} + \frac{19}{45} a - \frac{13}{45}$, $\frac{1}{270} a^{15} - \frac{1}{45} a^{13} - \frac{1}{270} a^{12} - \frac{7}{45} a^{11} - \frac{1}{10} a^{10} - \frac{7}{45} a^{9} + \frac{7}{18} a^{8} - \frac{7}{90} a^{7} + \frac{7}{270} a^{6} + \frac{4}{9} a^{5} + \frac{16}{45} a^{4} - \frac{2}{45} a^{3} + \frac{1}{45} a^{2} - \frac{1}{9} a - \frac{1}{135}$, $\frac{1}{20250} a^{16} - \frac{4}{10125} a^{15} - \frac{17}{6750} a^{14} + \frac{497}{20250} a^{13} + \frac{2323}{10125} a^{12} + \frac{1933}{6750} a^{11} - \frac{1156}{3375} a^{10} + \frac{119}{2250} a^{9} - \frac{2837}{6750} a^{8} + \frac{1727}{4050} a^{7} + \frac{2809}{20250} a^{6} + \frac{457}{1125} a^{5} + \frac{4}{675} a^{4} - \frac{448}{3375} a^{3} + \frac{1442}{3375} a^{2} - \frac{1006}{10125} a + \frac{1538}{10125}$, $\frac{1}{60750} a^{17} - \frac{1}{60750} a^{16} - \frac{107}{60750} a^{15} + \frac{14}{6075} a^{14} - \frac{8}{243} a^{13} - \frac{6152}{30375} a^{12} + \frac{3922}{10125} a^{11} + \frac{524}{10125} a^{10} + \frac{9787}{20250} a^{9} + \frac{19933}{60750} a^{8} + \frac{12629}{60750} a^{7} + \frac{8882}{30375} a^{6} + \frac{2867}{10125} a^{5} - \frac{3683}{10125} a^{4} + \frac{1681}{10125} a^{3} - \frac{1099}{30375} a^{2} - \frac{5504}{30375} a - \frac{9484}{30375}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 398664.7871956061 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.1.108.1, 3.1.1080.1, 6.0.4374000.1, 6.0.17496000.1, 9.1.60466176000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ | |
| $3$ | 3.6.7.2 | $x^{6} + 3 x^{2} + 6$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |