Normalized defining polynomial
\( x^{18} - 9 x^{17} + 43 x^{16} - 140 x^{15} + 301 x^{14} - 371 x^{13} + 94 x^{12} + 541 x^{11} - 35 x^{10} - 4236 x^{9} + 12775 x^{8} - 21345 x^{7} + 30849 x^{6} - 39744 x^{5} + 35316 x^{4} - 18792 x^{3} - 1728 x^{2} + 6480 x + 1296 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1370680848838155021841575936=-\,2^{12}\cdot 3^{9}\cdot 137^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{2}$, $\frac{1}{18} a^{8} - \frac{1}{18} a^{7} + \frac{1}{18} a^{6} + \frac{1}{9} a^{5} + \frac{1}{18} a^{4} + \frac{5}{18} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{9} + \frac{1}{3} a^{4} + \frac{5}{18} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{108} a^{10} + \frac{1}{108} a^{9} + \frac{1}{54} a^{8} + \frac{1}{27} a^{7} + \frac{2}{27} a^{6} + \frac{1}{27} a^{5} - \frac{41}{108} a^{4} + \frac{1}{4} a^{3} + \frac{5}{18} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{108} a^{11} + \frac{1}{108} a^{9} + \frac{1}{54} a^{8} + \frac{1}{27} a^{7} - \frac{1}{27} a^{6} - \frac{1}{12} a^{5} + \frac{8}{27} a^{4} - \frac{11}{36} a^{3} - \frac{5}{18} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{216} a^{12} + \frac{1}{216} a^{9} + \frac{1}{108} a^{8} - \frac{1}{27} a^{7} - \frac{17}{216} a^{6} - \frac{1}{27} a^{5} + \frac{11}{54} a^{4} + \frac{29}{72} a^{3} - \frac{17}{36} a^{2} - \frac{1}{6}$, $\frac{1}{216} a^{13} - \frac{1}{216} a^{10} - \frac{1}{216} a^{7} - \frac{1}{18} a^{6} + \frac{1}{9} a^{5} - \frac{71}{216} a^{4} - \frac{4}{9} a^{3} - \frac{5}{18} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{3888} a^{14} - \frac{7}{3888} a^{13} - \frac{1}{486} a^{12} - \frac{5}{3888} a^{11} - \frac{13}{3888} a^{10} - \frac{1}{486} a^{9} - \frac{41}{3888} a^{8} + \frac{83}{3888} a^{7} - \frac{41}{972} a^{6} - \frac{1}{16} a^{5} + \frac{23}{144} a^{4} + \frac{1}{12} a^{3} - \frac{17}{36} a + \frac{1}{18}$, $\frac{1}{3888} a^{15} - \frac{1}{1296} a^{13} - \frac{7}{3888} a^{12} - \frac{1}{324} a^{11} - \frac{1}{432} a^{10} - \frac{79}{3888} a^{9} + \frac{1}{81} a^{8} + \frac{73}{1296} a^{7} - \frac{221}{3888} a^{6} - \frac{11}{108} a^{5} + \frac{7}{144} a^{4} - \frac{17}{72} a^{3} + \frac{5}{18} a^{2} + \frac{1}{4} a - \frac{1}{9}$, $\frac{1}{45077472} a^{16} - \frac{1}{5634684} a^{15} - \frac{767}{45077472} a^{14} + \frac{5509}{45077472} a^{13} - \frac{2719}{1252152} a^{12} + \frac{97939}{45077472} a^{11} - \frac{168635}{45077472} a^{10} + \frac{35119}{1878228} a^{9} - \frac{651545}{45077472} a^{8} + \frac{332311}{5008608} a^{7} - \frac{130873}{11269368} a^{6} + \frac{27403}{185504} a^{5} + \frac{176677}{834768} a^{4} + \frac{17569}{104346} a^{3} + \frac{103045}{417384} a^{2} - \frac{2840}{17391} a - \frac{12877}{52173}$, $\frac{1}{21051179424} a^{17} + \frac{25}{2339019936} a^{16} - \frac{1370723}{21051179424} a^{15} - \frac{185327}{5262794856} a^{14} + \frac{24918631}{21051179424} a^{13} + \frac{3516595}{21051179424} a^{12} - \frac{37479367}{10525589712} a^{11} - \frac{55271993}{21051179424} a^{10} - \frac{17682661}{1238304672} a^{9} - \frac{11027285}{877132476} a^{8} + \frac{1206248389}{21051179424} a^{7} - \frac{211428445}{7017059808} a^{6} - \frac{213195971}{2339019936} a^{5} - \frac{96396979}{194918328} a^{4} - \frac{26037845}{194918328} a^{3} - \frac{9016299}{21657592} a^{2} - \frac{24310703}{97459164} a - \frac{7412693}{16243194}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28638652.8041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-411}) \), 3.1.411.1 x3, 6.0.69426531.1, 9.1.1826195471424.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $137$ | 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |