Normalized defining polynomial
\( x^{18} - 9 x^{17} + 90 x^{16} - 516 x^{15} + 2727 x^{14} - 10773 x^{13} + 37410 x^{12} - 105237 x^{11} + 255627 x^{10} - 516022 x^{9} + 885375 x^{8} - 1260243 x^{7} + 1486950 x^{6} - 1418553 x^{5} + 1073547 x^{4} - 618753 x^{3} + 255672 x^{2} - 67293 x + 8272 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-136379785993511844880006339228839=-\,3^{37}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{9} a^{2} - \frac{1}{9}$, $\frac{1}{117} a^{12} - \frac{2}{39} a^{11} + \frac{16}{117} a^{9} + \frac{4}{39} a^{8} - \frac{5}{39} a^{7} + \frac{2}{39} a^{6} - \frac{1}{3} a^{5} - \frac{19}{39} a^{4} - \frac{14}{117} a^{3} - \frac{10}{39} a^{2} + \frac{16}{39} a + \frac{22}{117}$, $\frac{1}{351} a^{13} + \frac{1}{351} a^{12} - \frac{1}{117} a^{11} + \frac{16}{351} a^{10} - \frac{32}{351} a^{9} - \frac{1}{39} a^{8} + \frac{19}{117} a^{7} + \frac{1}{117} a^{6} + \frac{11}{39} a^{5} + \frac{16}{351} a^{4} - \frac{128}{351} a^{3} - \frac{28}{117} a^{2} - \frac{71}{351} a + \frac{115}{351}$, $\frac{1}{702} a^{14} - \frac{1}{702} a^{13} - \frac{1}{351} a^{12} - \frac{35}{702} a^{11} - \frac{25}{702} a^{10} + \frac{32}{351} a^{9} + \frac{37}{234} a^{8} - \frac{1}{18} a^{7} - \frac{1}{117} a^{6} - \frac{23}{54} a^{5} - \frac{97}{702} a^{4} - \frac{4}{27} a^{3} + \frac{319}{702} a^{2} - \frac{145}{702} a - \frac{160}{351}$, $\frac{1}{9126} a^{15} - \frac{1}{9126} a^{14} - \frac{1}{234} a^{12} - \frac{463}{9126} a^{11} + \frac{1}{507} a^{10} + \frac{107}{9126} a^{9} + \frac{503}{3042} a^{8} + \frac{37}{507} a^{7} + \frac{841}{9126} a^{6} + \frac{1505}{9126} a^{5} + \frac{223}{507} a^{4} + \frac{1063}{3042} a^{3} - \frac{2473}{9126} a^{2} + \frac{136}{507} a + \frac{2116}{4563}$, $\frac{1}{23809734} a^{16} - \frac{4}{11904867} a^{15} + \frac{844}{3968289} a^{14} + \frac{139}{101751} a^{13} - \frac{11983}{3968289} a^{12} + \frac{182255}{3968289} a^{11} - \frac{603866}{11904867} a^{10} - \frac{1717661}{11904867} a^{9} - \frac{52808}{440921} a^{8} - \frac{1777912}{11904867} a^{7} + \frac{1081424}{11904867} a^{6} + \frac{1615396}{3968289} a^{5} - \frac{1910621}{3968289} a^{4} - \frac{220793}{1322763} a^{3} - \frac{1561363}{3968289} a^{2} - \frac{2020663}{23809734} a - \frac{5051714}{11904867}$, $\frac{1}{166668138} a^{17} + \frac{1}{83334069} a^{16} + \frac{356}{11904867} a^{15} + \frac{7666}{83334069} a^{14} - \frac{42904}{83334069} a^{13} + \frac{51607}{83334069} a^{12} + \frac{1370333}{83334069} a^{11} + \frac{59668}{11904867} a^{10} - \frac{10292761}{83334069} a^{9} - \frac{466498}{6410313} a^{8} - \frac{3164813}{83334069} a^{7} - \frac{12524599}{83334069} a^{6} - \frac{427157}{11904867} a^{5} + \frac{252485}{83334069} a^{4} - \frac{2916413}{83334069} a^{3} + \frac{1503679}{166668138} a^{2} + \frac{2888815}{83334069} a + \frac{32172506}{83334069}$
Class group and class number
$C_{3}\times C_{36}$, which has order $108$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46928148.8521 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3.C_2$ (as 18T27):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3.C_2$ |
| Character table for $C_2\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 9.9.1870004703089601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |