Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 18 x^{15} + 36 x^{14} - 81 x^{13} + 144 x^{12} - 378 x^{11} + 765 x^{10} - 1164 x^{9} + 2070 x^{8} - 2997 x^{7} + 3186 x^{6} - 3294 x^{5} + 2997 x^{4} - 1917 x^{3} + 1053 x^{2} - 540 x + 144 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1357192521131719482421875=-\,3^{33}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{9} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{9} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} + \frac{1}{3} a^{3}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{10} - \frac{1}{2} a^{7} + \frac{1}{6} a^{4} - \frac{1}{6} a$, $\frac{1}{90} a^{14} - \frac{1}{45} a^{13} - \frac{1}{18} a^{11} + \frac{1}{45} a^{10} - \frac{1}{45} a^{9} + \frac{1}{30} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{11}{30} a^{5} + \frac{1}{3} a^{4} + \frac{2}{5} a^{3} + \frac{13}{30} a^{2} + \frac{1}{15} a - \frac{1}{15}$, $\frac{1}{270} a^{15} + \frac{1}{45} a^{13} - \frac{1}{18} a^{12} + \frac{2}{45} a^{11} + \frac{2}{45} a^{10} + \frac{1}{30} a^{9} + \frac{2}{5} a^{8} - \frac{1}{3} a^{7} + \frac{13}{90} a^{6} - \frac{2}{15} a^{5} + \frac{7}{15} a^{4} - \frac{11}{30} a^{3} - \frac{7}{15} a^{2} + \frac{2}{15} a + \frac{2}{5}$, $\frac{1}{5130} a^{16} - \frac{4}{2565} a^{15} + \frac{4}{855} a^{14} + \frac{3}{190} a^{13} - \frac{2}{45} a^{12} - \frac{1}{95} a^{11} + \frac{43}{1710} a^{10} + \frac{1}{19} a^{9} + \frac{2}{57} a^{8} + \frac{47}{342} a^{7} + \frac{1}{171} a^{6} + \frac{1}{57} a^{5} - \frac{51}{190} a^{4} + \frac{103}{285} a^{3} - \frac{36}{95} a^{2} - \frac{4}{285} a - \frac{8}{95}$, $\frac{1}{1834359657660} a^{17} - \frac{57506683}{1834359657660} a^{16} - \frac{787161709}{611453219220} a^{15} + \frac{112776859}{61145321922} a^{14} + \frac{2483440021}{101908869870} a^{13} + \frac{678727577}{611453219220} a^{12} + \frac{3231832831}{152863304805} a^{11} - \frac{392772163}{16984811645} a^{10} + \frac{19795476091}{611453219220} a^{9} + \frac{25577046997}{152863304805} a^{8} + \frac{67054118564}{152863304805} a^{7} + \frac{1200492861}{13587849316} a^{6} + \frac{6134531519}{101908869870} a^{5} - \frac{1938755809}{16984811645} a^{4} - \frac{54175531099}{203817739740} a^{3} - \frac{16186106341}{40763547948} a^{2} + \frac{2739691493}{67939246580} a + \frac{5131205593}{50954434935}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{52746977}{2145449892} a^{17} - \frac{119291039}{2145449892} a^{16} + \frac{390991081}{2145449892} a^{15} - \frac{1001856473}{3218174838} a^{14} + \frac{239149687}{357574982} a^{13} - \frac{9757006351}{6436349676} a^{12} + \frac{441577319}{178787491} a^{11} - \frac{12181855252}{1609087419} a^{10} + \frac{9567266203}{715149964} a^{9} - \frac{3450465400}{178787491} a^{8} + \frac{6699319196}{178787491} a^{7} - \frac{33823767875}{715149964} a^{6} + \frac{49327961971}{1072724946} a^{5} - \frac{8913561072}{178787491} a^{4} + \frac{85484138417}{2145449892} a^{3} - \frac{15012043171}{715149964} a^{2} + \frac{28238962031}{2145449892} a - \frac{856241244}{178787491} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 327769.649962 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3.C_2$ (as 18T27):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3.C_2$ |
| Character table for $C_2\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 9.1.672605015625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |