Normalized defining polynomial
\( x^{18} - 384 x^{15} + 60865 x^{12} - 5132480 x^{9} + 244702657 x^{6} - 6291718144 x^{3} + 68719476736 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13521742669994394164761026842904343927116603=-\,3^{27}\cdot 110017^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $248.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 110017$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{382} a^{9} - \frac{1}{382} a^{6} + \frac{63}{382} a^{3} - \frac{46}{191}$, $\frac{1}{382} a^{10} - \frac{1}{382} a^{7} + \frac{63}{382} a^{4} - \frac{46}{191} a$, $\frac{1}{382} a^{11} - \frac{1}{382} a^{8} + \frac{63}{382} a^{5} - \frac{46}{191} a^{2}$, $\frac{1}{382} a^{12} + \frac{31}{191} a^{6} - \frac{29}{382} a^{3} - \frac{46}{191}$, $\frac{1}{12224} a^{13} - \frac{511}{12224} a^{7} - \frac{87}{191} a^{4} - \frac{5631}{12224} a$, $\frac{1}{782336} a^{14} - \frac{3}{6112} a^{11} + \frac{85441}{782336} a^{8} - \frac{3139}{12224} a^{5} + \frac{335297}{782336} a^{2}$, $\frac{1}{1369951698944} a^{15} - \frac{12032003}{10702747648} a^{12} - \frac{1260720703}{1369951698944} a^{9} + \frac{2363449021}{21405495296} a^{6} + \frac{175118998977}{1369951698944} a^{3} - \frac{183335}{5225951}$, $\frac{1}{87676908732416} a^{16} - \frac{12032003}{684975849472} a^{13} - \frac{47882113599}{87676908732416} a^{10} - \frac{275179530563}{1369951698944} a^{7} - \frac{31531014431295}{87676908732416} a^{4} - \frac{33843509}{83615216} a$, $\frac{1}{5611322158874624} a^{17} - \frac{12032003}{43838454366208} a^{14} - \frac{3720213369407}{5611322158874624} a^{11} + \frac{14166693484221}{87676908732416} a^{8} + \frac{920750384340417}{5611322158874624} a^{5} - \frac{2011058813}{5351373824} a^{2}$
Class group and class number
$C_{2}\times C_{554}$, which has order $1108$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{268543}{43838454366208} a^{17} - \frac{660717}{342487924736} a^{14} + \frac{10421726015}{43838454366208} a^{11} - \frac{9899748765}{684975849472} a^{8} + \frac{19211859524415}{43838454366208} a^{5} - \frac{112909692511}{21405495296} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 829326601048.2684 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2\times S_3$ (as 18T17):
| A solvable group of order 54 |
| The 27 conjugacy class representatives for $C_3^2\times S_3$ |
| Character table for $C_3^2\times S_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), Deg 6, 6.0.326800987803.1, \(\Q(\zeta_{9})\), 6.0.238237920108387.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 110017 | Data not computed | ||||||