Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 405 x^{14} - 819 x^{13} + 1311 x^{12} - 1665 x^{11} + 1674 x^{10} - 1330 x^{9} + 837 x^{8} - 423 x^{7} + 159 x^{6} - 9 x^{5} - 27 x^{4} - 3 x^{3} + 45 x^{2} - 36 x + 13 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1344540538448023869960192=-\,2^{12}\cdot 3^{43}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{191843} a^{16} - \frac{8}{191843} a^{15} - \frac{91309}{191843} a^{14} + \frac{63774}{191843} a^{13} + \frac{17982}{191843} a^{12} + \frac{21897}{191843} a^{11} - \frac{42}{10097} a^{10} - \frac{50707}{191843} a^{9} - \frac{55265}{191843} a^{8} - \frac{32365}{191843} a^{7} + \frac{48460}{191843} a^{6} - \frac{31146}{191843} a^{5} - \frac{72765}{191843} a^{4} - \frac{41948}{191843} a^{3} - \frac{34706}{191843} a^{2} + \frac{67060}{191843} a - \frac{76037}{191843}$, $\frac{1}{124506107} a^{17} + \frac{316}{124506107} a^{16} - \frac{17743457}{124506107} a^{15} - \frac{21079250}{124506107} a^{14} - \frac{19989958}{124506107} a^{13} - \frac{35781866}{124506107} a^{12} + \frac{16302294}{124506107} a^{11} - \frac{830367}{11318737} a^{10} - \frac{57346892}{124506107} a^{9} + \frac{55153958}{124506107} a^{8} + \frac{53637762}{124506107} a^{7} + \frac{9914604}{124506107} a^{6} - \frac{1181159}{6552953} a^{5} - \frac{29756784}{124506107} a^{4} + \frac{20714039}{124506107} a^{3} - \frac{34007001}{124506107} a^{2} - \frac{18827470}{124506107} a - \frac{31734179}{124506107}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1234866}{6552953} a^{17} + \frac{10496361}{6552953} a^{16} - \frac{49821384}{6552953} a^{15} + \frac{163733160}{6552953} a^{14} - \frac{400088640}{6552953} a^{13} + \frac{754069134}{6552953} a^{12} - \frac{1108051608}{6552953} a^{11} + \frac{114676998}{595723} a^{10} - \frac{47871176}{284911} a^{9} + \frac{731973021}{6552953} a^{8} - \frac{371320368}{6552953} a^{7} + \frac{146252064}{6552953} a^{6} - \frac{23788266}{6552953} a^{5} - \frac{44424291}{6552953} a^{4} + \frac{21118320}{6552953} a^{3} + \frac{21545538}{6552953} a^{2} - \frac{38049846}{6552953} a + \frac{16867347}{6552953} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205747.43076295865 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.972.1 x3, 6.0.2834352.1, 9.3.669462604992.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||