Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 423 x^{14} - 945 x^{13} + 1815 x^{12} - 3051 x^{11} + 4572 x^{10} - 6118 x^{9} + 7425 x^{8} - 8145 x^{7} + 8241 x^{6} - 7497 x^{5} + 6111 x^{4} - 4125 x^{3} + 2223 x^{2} - 810 x + 175 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1344540538448023869960192=-\,2^{12}\cdot 3^{43}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{10} a^{13} + \frac{1}{10} a^{12} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{10} a^{7} + \frac{3}{10} a^{6} + \frac{3}{10} a^{5} + \frac{3}{10} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{3}{10} a - \frac{1}{2}$, $\frac{1}{10} a^{14} + \frac{3}{10} a^{10} + \frac{1}{5} a^{9} + \frac{3}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{4} - \frac{2}{5} a^{3} - \frac{1}{2} a^{2} + \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{15} + \frac{3}{10} a^{11} + \frac{1}{5} a^{10} + \frac{3}{10} a^{9} + \frac{2}{5} a^{8} - \frac{1}{10} a^{5} - \frac{2}{5} a^{4} - \frac{1}{2} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{382550} a^{16} - \frac{4}{191275} a^{15} - \frac{4903}{382550} a^{14} - \frac{271}{27325} a^{13} + \frac{1017}{191275} a^{12} + \frac{18377}{191275} a^{11} + \frac{23777}{54650} a^{10} - \frac{74591}{191275} a^{9} - \frac{12409}{76510} a^{8} - \frac{6547}{27325} a^{7} + \frac{55141}{191275} a^{6} - \frac{11522}{27325} a^{5} + \frac{111093}{382550} a^{4} - \frac{58032}{191275} a^{3} - \frac{70699}{191275} a^{2} + \frac{56241}{191275} a + \frac{1754}{5465}$, $\frac{1}{148811950} a^{17} + \frac{93}{74405975} a^{16} - \frac{47197}{29762390} a^{15} + \frac{402377}{74405975} a^{14} + \frac{3894853}{148811950} a^{13} + \frac{3662058}{14881195} a^{12} - \frac{521267}{14881195} a^{11} + \frac{1188797}{74405975} a^{10} - \frac{20663763}{148811950} a^{9} - \frac{29782294}{74405975} a^{8} - \frac{3587831}{29762390} a^{7} + \frac{164684}{14881195} a^{6} + \frac{34312318}{74405975} a^{5} + \frac{29003879}{74405975} a^{4} - \frac{27434262}{74405975} a^{3} + \frac{1126134}{2976239} a^{2} - \frac{42132837}{148811950} a + \frac{143536}{2125885}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{910398}{10629425} a^{17} + \frac{7738383}{10629425} a^{16} - \frac{36420108}{10629425} a^{15} + \frac{4735326}{425177} a^{14} - \frac{301676358}{10629425} a^{13} + \frac{634880454}{10629425} a^{12} - \frac{1153637526}{10629425} a^{11} + \frac{1835920812}{10629425} a^{10} - \frac{2606567848}{10629425} a^{9} + \frac{3291047799}{10629425} a^{8} - \frac{3780361518}{10629425} a^{7} + \frac{3912652242}{10629425} a^{6} - \frac{3757401006}{10629425} a^{5} + \frac{3174333099}{10629425} a^{4} - \frac{2325846462}{10629425} a^{3} + \frac{1299594732}{10629425} a^{2} - \frac{509004312}{10629425} a + \frac{20790429}{2125885} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 337293.4983275989 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.972.2 x3, 6.0.2834352.2, 9.3.669462604992.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||