Normalized defining polynomial
\( x^{18} - 6 x^{17} + 15 x^{16} - 23 x^{15} + 37 x^{14} - 78 x^{13} + 152 x^{12} - 240 x^{11} + 302 x^{10} - 308 x^{9} + 300 x^{8} - 298 x^{7} + 220 x^{6} - 85 x^{5} + 25 x^{4} - 26 x^{3} + 12 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13415474159898041623=-\,7^{15}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{7} a^{12} - \frac{2}{7} a^{11} - \frac{2}{7} a^{10} + \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{6} + \frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{2}{7} a^{2} + \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{11} - \frac{2}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} + \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{3} - \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{7} - \frac{1}{7}$, $\frac{1}{7} a^{15} + \frac{2}{7} a^{8} - \frac{1}{7} a$, $\frac{1}{91} a^{16} - \frac{2}{91} a^{15} - \frac{4}{91} a^{14} - \frac{4}{91} a^{13} + \frac{31}{91} a^{11} + \frac{29}{91} a^{10} + \frac{3}{91} a^{9} - \frac{5}{91} a^{8} + \frac{16}{91} a^{7} - \frac{36}{91} a^{6} + \frac{45}{91} a^{5} + \frac{6}{13} a^{4} + \frac{17}{91} a^{3} + \frac{3}{13} a^{2} - \frac{25}{91} a + \frac{45}{91}$, $\frac{1}{294931} a^{17} - \frac{899}{294931} a^{16} - \frac{17151}{294931} a^{15} + \frac{18300}{294931} a^{14} - \frac{57}{22687} a^{13} - \frac{18975}{294931} a^{12} - \frac{119038}{294931} a^{11} - \frac{140228}{294931} a^{10} - \frac{298}{637} a^{9} - \frac{129022}{294931} a^{8} - \frac{3845}{294931} a^{7} + \frac{88575}{294931} a^{6} + \frac{54447}{294931} a^{5} - \frac{116450}{294931} a^{4} - \frac{10574}{294931} a^{3} + \frac{11246}{294931} a^{2} + \frac{40085}{294931} a - \frac{6659}{22687}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{741}{3241} a^{17} - \frac{39470}{42133} a^{16} + \frac{39303}{42133} a^{15} + \frac{2564}{6019} a^{14} + \frac{31039}{42133} a^{13} - \frac{2328}{463} a^{12} + \frac{240360}{42133} a^{11} + \frac{274}{6019} a^{10} - \frac{1200}{91} a^{9} + \frac{1119011}{42133} a^{8} - \frac{932756}{42133} a^{7} + \frac{836362}{42133} a^{6} - \frac{1636543}{42133} a^{5} + \frac{194663}{6019} a^{4} - \frac{7777}{6019} a^{3} - \frac{76417}{42133} a^{2} - \frac{26186}{6019} a - \frac{13298}{42133} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 765.05787444 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^3:C_6$ (as 18T85):
| A solvable group of order 162 |
| The 13 conjugacy class representatives for $C_3^3:C_6$ |
| Character table for $C_3^3:C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.3.1384375783.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |