Normalized defining polynomial
\( x^{18} - 3 x^{16} - 7 x^{15} + 9 x^{14} + 42 x^{13} - 6 x^{12} - 126 x^{11} - 108 x^{10} + 140 x^{9} + 450 x^{8} + 588 x^{7} + 498 x^{6} + 378 x^{5} + 525 x^{4} + 980 x^{3} + 1323 x^{2} + 1029 x + 343 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1340851596668237962730583=-\,3^{24}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{58} a^{11} - \frac{3}{29} a^{10} - \frac{1}{29} a^{9} + \frac{11}{58} a^{8} - \frac{4}{29} a^{7} - \frac{14}{29} a^{6} + \frac{6}{29} a^{5} + \frac{11}{58} a^{4} - \frac{13}{29} a^{3} + \frac{3}{29} a^{2} - \frac{1}{58} a - \frac{5}{29}$, $\frac{1}{58} a^{12} - \frac{9}{58} a^{10} - \frac{1}{58} a^{9} + \frac{11}{58} a^{7} + \frac{9}{29} a^{6} + \frac{25}{58} a^{5} - \frac{9}{29} a^{4} - \frac{5}{58} a^{3} - \frac{23}{58} a^{2} - \frac{8}{29} a + \frac{27}{58}$, $\frac{1}{58} a^{13} + \frac{3}{58} a^{10} + \frac{11}{58} a^{9} - \frac{3}{29} a^{8} + \frac{2}{29} a^{7} + \frac{5}{58} a^{6} - \frac{13}{29} a^{5} - \frac{11}{29} a^{4} - \frac{25}{58} a^{3} + \frac{9}{58} a^{2} + \frac{9}{29} a + \frac{13}{29}$, $\frac{1}{812} a^{14} + \frac{1}{203} a^{12} - \frac{38}{203} a^{10} + \frac{4}{29} a^{9} - \frac{3}{14} a^{8} - \frac{1}{58} a^{7} - \frac{69}{203} a^{6} - \frac{13}{29} a^{5} + \frac{11}{203} a^{4} - \frac{9}{29} a^{3} + \frac{93}{203} a^{2} - \frac{17}{58} a - \frac{1}{116}$, $\frac{1}{812} a^{15} + \frac{1}{203} a^{13} + \frac{1}{406} a^{11} - \frac{19}{203} a^{9} + \frac{2}{29} a^{8} + \frac{1}{7} a^{7} + \frac{7}{29} a^{6} + \frac{67}{203} a^{5} - \frac{13}{58} a^{4} - \frac{96}{203} a^{3} + \frac{10}{29} a^{2} - \frac{23}{116} a + \frac{3}{29}$, $\frac{1}{73892} a^{16} - \frac{1}{10556} a^{15} + \frac{9}{36946} a^{14} - \frac{41}{5278} a^{13} + \frac{13}{2842} a^{12} - \frac{19}{5278} a^{11} + \frac{4477}{36946} a^{10} - \frac{521}{2639} a^{9} + \frac{1681}{18473} a^{8} - \frac{111}{5278} a^{7} + \frac{11537}{36946} a^{6} + \frac{1077}{5278} a^{5} + \frac{17469}{36946} a^{4} + \frac{723}{5278} a^{3} + \frac{13}{812} a^{2} + \frac{515}{1508} a + \frac{48}{377}$, $\frac{1}{2142868} a^{17} - \frac{3}{535717} a^{16} - \frac{146}{535717} a^{15} - \frac{1119}{2142868} a^{14} + \frac{2076}{535717} a^{13} + \frac{2571}{1071434} a^{12} - \frac{8235}{1071434} a^{11} - \frac{6500}{41209} a^{10} - \frac{14919}{82418} a^{9} + \frac{105275}{535717} a^{8} + \frac{67}{535717} a^{7} - \frac{147832}{535717} a^{6} + \frac{21179}{1071434} a^{5} - \frac{117137}{1071434} a^{4} - \frac{105887}{306124} a^{3} + \frac{1993}{21866} a^{2} + \frac{3600}{10933} a + \frac{15199}{43732}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{32589}{535717} a^{17} + \frac{53511}{1071434} a^{16} + \frac{315727}{2142868} a^{15} + \frac{621603}{2142868} a^{14} - \frac{416109}{535717} a^{13} - \frac{1048345}{535717} a^{12} + \frac{2262231}{1071434} a^{11} + \frac{3163662}{535717} a^{10} + \frac{812215}{535717} a^{9} - \frac{823023}{82418} a^{8} - \frac{1561551}{82418} a^{7} - \frac{802056}{41209} a^{6} - \frac{7308396}{535717} a^{5} - \frac{12237327}{1071434} a^{4} - \frac{1711839}{76531} a^{3} - \frac{6283287}{153062} a^{2} - \frac{2017401}{43732} a - \frac{1014017}{43732} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 725499.841066 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.567.1 x3, \(\Q(\zeta_{7})^+\), 6.0.2250423.3, 6.0.110270727.4 x2, \(\Q(\zeta_{7})\), 9.3.437664515463.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.110270727.4 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |