Normalized defining polynomial
\( x^{18} - 7 x^{17} - 14 x^{16} + 296 x^{15} - 104 x^{14} - 8692 x^{13} + 40510 x^{12} - 31030 x^{11} - 103469 x^{10} - 883965 x^{9} + 10462064 x^{8} - 42389938 x^{7} + 122868164 x^{6} - 348451720 x^{5} + 1353700784 x^{4} - 4306452928 x^{3} + 10681441664 x^{2} - 15402059776 x + 14816731136 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-134073374251346122646523762386906440653122306048=-\,2^{18}\cdot 23^{9}\cdot 127^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $415.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} - \frac{3}{64} a^{8} + \frac{3}{32} a^{7} + \frac{5}{64} a^{6} - \frac{3}{16} a^{5} + \frac{3}{32} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{32} a^{10} + \frac{1}{64} a^{9} + \frac{5}{64} a^{7} - \frac{1}{32} a^{6} + \frac{5}{32} a^{5} - \frac{3}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{3}{128} a^{11} + \frac{3}{128} a^{10} + \frac{3}{128} a^{9} + \frac{5}{128} a^{8} - \frac{3}{128} a^{7} - \frac{1}{32} a^{6} + \frac{11}{64} a^{5} - \frac{5}{32} a^{4} + \frac{5}{16} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{9344} a^{15} - \frac{9}{4672} a^{14} + \frac{1}{2336} a^{13} + \frac{3}{2336} a^{12} - \frac{55}{2336} a^{11} - \frac{5}{292} a^{10} + \frac{199}{4672} a^{9} - \frac{13}{584} a^{8} - \frac{293}{9344} a^{7} - \frac{483}{4672} a^{6} + \frac{715}{4672} a^{5} + \frac{475}{2336} a^{4} - \frac{405}{1168} a^{3} + \frac{229}{584} a^{2} - \frac{16}{73} a + \frac{4}{73}$, $\frac{1}{299008} a^{16} - \frac{1}{74752} a^{15} - \frac{489}{149504} a^{14} + \frac{1129}{149504} a^{13} - \frac{1121}{149504} a^{12} + \frac{1227}{149504} a^{11} - \frac{325}{18688} a^{10} - \frac{5275}{149504} a^{9} + \frac{11249}{299008} a^{8} - \frac{1293}{149504} a^{7} + \frac{9429}{149504} a^{6} - \frac{1601}{74752} a^{5} - \frac{7}{512} a^{4} + \frac{7687}{18688} a^{3} + \frac{1317}{4672} a^{2} - \frac{877}{2336} a - \frac{139}{292}$, $\frac{1}{187053819202271225179713893144930110658660391657472} a^{17} - \frac{262914538340703314915712405454371618401932027}{187053819202271225179713893144930110658660391657472} a^{16} - \frac{1035130992645646940283306078509434380981568731}{93526909601135612589856946572465055329330195828736} a^{15} - \frac{5437925428325510133950690796427872775913031329}{11690863700141951573732118321558131916166274478592} a^{14} + \frac{27464344727837513394171010180647939178908681185}{5845431850070975786866059160779065958083137239296} a^{13} - \frac{144560525943466309655660804619296228642842184943}{46763454800567806294928473286232527664665097914368} a^{12} + \frac{1770206212945586868387011829996888764880922851131}{93526909601135612589856946572465055329330195828736} a^{11} - \frac{385258862852770409813747657214545991085397112515}{93526909601135612589856946572465055329330195828736} a^{10} - \frac{2968220765732072327590071064410043292558401202165}{187053819202271225179713893144930110658660391657472} a^{9} - \frac{9091716876331451915878825679266183574337952222497}{187053819202271225179713893144930110658660391657472} a^{8} - \frac{41130436932920617413061808891715412287226132897}{365339490629435986679128697548691622380196077456} a^{7} - \frac{3818702870861018806372741553298974278791824426245}{93526909601135612589856946572465055329330195828736} a^{6} - \frac{3809364620327737799791313839499537175660550407143}{46763454800567806294928473286232527664665097914368} a^{5} + \frac{2048174224579188856634505380090278376338817620823}{23381727400283903147464236643116263832332548957184} a^{4} - \frac{778856016106423354871798451172591796447787173613}{11690863700141951573732118321558131916166274478592} a^{3} - \frac{621134373117176197314301248176395924596805914205}{2922715925035487893433029580389532979041568619648} a^{2} + \frac{195320142920815560460312584913799832742773031091}{1461357962517743946716514790194766489520784309824} a + \frac{34424878501393203038904488997949427542193293405}{182669745314717993339564348774345811190098038728}$
Class group and class number
$C_{12}\times C_{252}\times C_{1888488}$, which has order $5710787712$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5546046730.2947445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.3.16129.1, 3.3.1016.1, 6.0.3165179847047.1, 6.0.12559458752.3, 9.9.272832440404737536.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $127$ | 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 127.3.2.1 | $x^{3} - 127$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 127.6.5.1 | $x^{6} - 127$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |