Normalized defining polynomial
\( x^{18} + 7 x^{16} - 8 x^{15} + 37 x^{14} + 16 x^{13} + 96 x^{12} + 58 x^{11} + 72 x^{10} + 346 x^{9} + 303 x^{8} + 172 x^{7} + 457 x^{6} + 418 x^{5} + 103 x^{4} + 36 x^{3} + 82 x^{2} + 48 x + 9 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13380662562832253498425344=-\,2^{24}\cdot 3^{12}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{2}{9} a^{6} + \frac{1}{9} a^{5} - \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} - \frac{1}{9} a^{10} + \frac{1}{3} a^{5} + \frac{4}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{2}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{4}{9} a^{6} - \frac{4}{9} a^{5} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{4}{9} a^{2}$, $\frac{1}{297} a^{16} - \frac{5}{297} a^{15} + \frac{1}{297} a^{14} + \frac{10}{297} a^{13} - \frac{1}{27} a^{12} - \frac{8}{297} a^{11} + \frac{16}{99} a^{10} - \frac{1}{9} a^{9} + \frac{4}{33} a^{8} + \frac{1}{297} a^{7} - \frac{125}{297} a^{6} - \frac{125}{297} a^{5} + \frac{73}{297} a^{4} + \frac{100}{297} a^{3} + \frac{46}{297} a^{2} + \frac{46}{99} a + \frac{16}{33}$, $\frac{1}{2079282702123} a^{17} - \frac{362259884}{2079282702123} a^{16} + \frac{67052020645}{2079282702123} a^{15} - \frac{69204322433}{2079282702123} a^{14} + \frac{80186824105}{2079282702123} a^{13} + \frac{68101467085}{2079282702123} a^{12} - \frac{2298864723}{77010470449} a^{11} - \frac{14598970655}{231031411347} a^{10} + \frac{13375257754}{693094234041} a^{9} - \frac{330600442466}{2079282702123} a^{8} - \frac{1189293214}{35242079697} a^{7} - \frac{331860269711}{2079282702123} a^{6} + \frac{884883290266}{2079282702123} a^{5} + \frac{1015076288932}{2079282702123} a^{4} + \frac{423944899267}{2079282702123} a^{3} - \frac{833255806}{5728051521} a^{2} - \frac{34846908326}{77010470449} a + \frac{13416035144}{77010470449}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105207.891383 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 864 |
| The 40 conjugacy class representatives for t18n228 |
| Character table for t18n228 is not computed |
Intermediate fields
| 3.3.321.1, 6.0.59351616.1, 9.3.6350622912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.12.9.2 | $x^{12} - 9 x^{4} + 27$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |
| 107 | Data not computed | ||||||