Normalized defining polynomial
\( x^{18} - x^{17} + 8 x^{16} - 13 x^{15} + 21 x^{14} - 27 x^{13} + 19 x^{12} + 22 x^{11} + 61 x^{10} + 85 x^{9} + 160 x^{8} - 26 x^{7} + 166 x^{6} - 87 x^{5} + 56 x^{4} - 34 x^{3} + 11 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-133681279779085528641536=-\,2^{12}\cdot 7^{12}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} + \frac{4}{15} a^{11} + \frac{1}{15} a^{10} + \frac{4}{15} a^{9} + \frac{4}{15} a^{8} - \frac{2}{15} a^{7} + \frac{7}{15} a^{6} - \frac{1}{3} a^{5} - \frac{2}{15} a^{4} - \frac{2}{15} a^{3} + \frac{4}{15} a^{2} + \frac{1}{15} a + \frac{1}{15}$, $\frac{1}{15} a^{13} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a - \frac{4}{15}$, $\frac{1}{15} a^{14} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{2} - \frac{4}{15} a$, $\frac{1}{15} a^{15} + \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{4}{15} a^{2}$, $\frac{1}{103935} a^{16} - \frac{71}{7995} a^{15} + \frac{989}{34645} a^{14} + \frac{406}{103935} a^{13} - \frac{36}{34645} a^{12} - \frac{7772}{34645} a^{11} - \frac{2897}{34645} a^{10} - \frac{2211}{6929} a^{9} + \frac{2751}{6929} a^{8} - \frac{5774}{34645} a^{7} + \frac{2663}{6929} a^{6} + \frac{11}{2665} a^{5} + \frac{11138}{34645} a^{4} + \frac{7379}{103935} a^{3} + \frac{30542}{103935} a^{2} - \frac{2259}{34645} a - \frac{2900}{20787}$, $\frac{1}{64127895} a^{17} + \frac{51}{21375965} a^{16} - \frac{450163}{21375965} a^{15} + \frac{33274}{64127895} a^{14} - \frac{26540}{986583} a^{13} + \frac{1578868}{64127895} a^{12} - \frac{23149658}{64127895} a^{11} - \frac{30199397}{64127895} a^{10} + \frac{14861206}{64127895} a^{9} - \frac{22869056}{64127895} a^{8} + \frac{2264692}{64127895} a^{7} - \frac{30279068}{64127895} a^{6} - \frac{17700536}{64127895} a^{5} - \frac{7818444}{21375965} a^{4} + \frac{5766713}{12825579} a^{3} + \frac{4295077}{64127895} a^{2} - \frac{1016941}{4275193} a - \frac{22801231}{64127895}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6989.09727608 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.44.1 x3, \(\Q(\zeta_{7})^+\), 6.0.21296.1, 6.0.51131696.1 x2, 6.0.3195731.1, 9.3.10021812416.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.51131696.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |