Normalized defining polynomial
\( x^{18} - 3 x^{17} + 8 x^{16} - 9 x^{15} + 11 x^{14} - 12 x^{13} + 36 x^{12} - 59 x^{11} + 25 x^{10} - 11 x^{9} + 77 x^{8} - 221 x^{7} + 279 x^{6} - 210 x^{5} + 129 x^{4} - 49 x^{3} + 18 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13275077566551425157463=-\,7^{15}\cdot 52879^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 52879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} + \frac{10}{37} a^{15} - \frac{6}{37} a^{14} - \frac{10}{37} a^{13} + \frac{5}{37} a^{12} + \frac{13}{37} a^{11} + \frac{3}{37} a^{10} - \frac{5}{37} a^{9} + \frac{9}{37} a^{8} + \frac{12}{37} a^{7} + \frac{10}{37} a^{6} - \frac{6}{37} a^{5} - \frac{18}{37} a^{4} + \frac{13}{37} a^{3} + \frac{4}{37} a^{2} + \frac{18}{37} a + \frac{9}{37}$, $\frac{1}{195263000203597} a^{17} + \frac{984974936495}{195263000203597} a^{16} - \frac{7126382774595}{195263000203597} a^{15} + \frac{36000620654088}{195263000203597} a^{14} - \frac{32444170977527}{195263000203597} a^{13} + \frac{54814223395252}{195263000203597} a^{12} + \frac{26908720039723}{195263000203597} a^{11} + \frac{68482979142247}{195263000203597} a^{10} - \frac{205623455322}{195263000203597} a^{9} - \frac{80271009936064}{195263000203597} a^{8} + \frac{4880650100074}{195263000203597} a^{7} - \frac{52437167700565}{195263000203597} a^{6} + \frac{24855598095780}{195263000203597} a^{5} + \frac{36651346263573}{195263000203597} a^{4} + \frac{83224382093118}{195263000203597} a^{3} + \frac{79056107995938}{195263000203597} a^{2} + \frac{4242470255068}{195263000203597} a - \frac{84932514281449}{195263000203597}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{141701104654080}{195263000203597} a^{17} - \frac{390489024684488}{195263000203597} a^{16} + \frac{1022095806218124}{195263000203597} a^{15} - \frac{979268767855026}{195263000203597} a^{14} + \frac{1198654081137127}{195263000203597} a^{13} - \frac{1285643336878647}{195263000203597} a^{12} + \frac{4642173413759320}{195263000203597} a^{11} - \frac{7071507169810894}{195263000203597} a^{10} + \frac{1262508093158063}{195263000203597} a^{9} - \frac{396455982281341}{195263000203597} a^{8} + \frac{10575909826303834}{195263000203597} a^{7} - \frac{28739504491862254}{195263000203597} a^{6} + \frac{31240259654577404}{195263000203597} a^{5} - \frac{18676951334772072}{195263000203597} a^{4} + \frac{9865567172331900}{195263000203597} a^{3} - \frac{2109346033204980}{195263000203597} a^{2} + \frac{787060245924693}{195263000203597} a + \frac{54703304974880}{195263000203597} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18327.0613213 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 34 conjugacy class representatives for t18n286 |
| Character table for t18n286 is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.7.6221161471.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | $18$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 52879 | Data not computed | ||||||