Normalized defining polynomial
\( x^{18} - 48 x^{15} + 1944 x^{12} - 28944 x^{9} + 409536 x^{6} + 2099520 x^{3} + 34012224 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13266257117930788904129800273932288=-\,2^{12}\cdot 3^{33}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{6} a^{4}$, $\frac{1}{18} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{36} a^{6}$, $\frac{1}{108} a^{7} - \frac{1}{18} a^{4} + \frac{1}{3} a$, $\frac{1}{108} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{1296} a^{9} + \frac{1}{108} a^{6} - \frac{1}{18} a^{3} - \frac{1}{2}$, $\frac{1}{1296} a^{10} + \frac{1}{6} a$, $\frac{1}{3888} a^{11} + \frac{1}{18} a^{2}$, $\frac{1}{69984} a^{12} + \frac{1}{324} a^{3}$, $\frac{1}{69984} a^{13} + \frac{1}{324} a^{4}$, $\frac{1}{209952} a^{14} + \frac{1}{972} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{37371456} a^{15} - \frac{29}{6228576} a^{12} + \frac{11}{28836} a^{9} + \frac{361}{173016} a^{6} + \frac{745}{28836} a^{3} + \frac{7}{89}$, $\frac{1}{112114368} a^{16} - \frac{29}{18685728} a^{13} - \frac{5}{38448} a^{10} - \frac{1241}{519048} a^{7} + \frac{7153}{86508} a^{4} - \frac{25}{178} a$, $\frac{1}{1009029312} a^{17} - \frac{37}{21021444} a^{14} - \frac{5}{346032} a^{11} + \frac{8371}{4671432} a^{8} + \frac{2923}{194643} a^{5} + \frac{281}{4806} a^{2}$
Class group and class number
$C_{3}\times C_{3}\times C_{9}$, which has order $81$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{5}{37371456} a^{15} - \frac{7}{778572} a^{12} + \frac{7}{19224} a^{9} - \frac{1399}{173016} a^{6} + \frac{553}{7209} a^{3} + \frac{35}{89} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 898516250.6729627 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 18T21):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $He_3:C_2$ |
| Character table for $He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.867.1 x3, 6.0.2255067.2, 9.1.66498764695119936.21 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ |
| 3.6.11.14 | $x^{6} + 12 x^{3} + 18 x^{2} + 3$ | $6$ | $1$ | $11$ | $S_3\times C_3$ | $[2, 5/2]_{2}$ | |
| 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $17$ | 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |