Normalized defining polynomial
\( x^{18} - 114 x^{15} + 6174 x^{12} + 11666 x^{9} + 74088 x^{6} + 80707214 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1318712761724157691283452043722752=-\,2^{26}\cdot 3^{32}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{6} - \frac{2}{5}$, $\frac{1}{105} a^{10} + \frac{1}{15} a^{9} + \frac{1}{3} a^{8} - \frac{2}{105} a^{7} + \frac{1}{5} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{17}{105} a - \frac{7}{15}$, $\frac{1}{735} a^{11} + \frac{1}{15} a^{9} + \frac{278}{735} a^{8} + \frac{1}{3} a^{7} - \frac{2}{15} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{64}{245} a^{2} - \frac{1}{3} a - \frac{2}{15}$, $\frac{1}{5145} a^{12} + \frac{229}{5145} a^{9} - \frac{4}{15} a^{6} - \frac{682}{5145} a^{3} + \frac{1}{15}$, $\frac{1}{36015} a^{13} - \frac{38}{12005} a^{10} - \frac{1}{15} a^{9} - \frac{1}{3} a^{8} - \frac{17}{105} a^{7} - \frac{1}{5} a^{6} + \frac{1}{3} a^{5} + \frac{4463}{36015} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{16}{35} a + \frac{7}{15}$, $\frac{1}{252105} a^{14} - \frac{38}{84035} a^{11} - \frac{1}{15} a^{9} + \frac{6}{245} a^{8} - \frac{1}{3} a^{7} + \frac{2}{15} a^{6} + \frac{9491}{84035} a^{5} + \frac{1}{3} a^{4} + \frac{118}{735} a^{2} + \frac{1}{3} a + \frac{2}{15}$, $\frac{1}{8190733646639985} a^{15} + \frac{281431701913}{8190733646639985} a^{12} + \frac{1247056688387}{23879689931895} a^{9} - \frac{3851081784730519}{8190733646639985} a^{6} + \frac{93906905063}{4775937986379} a^{3} + \frac{9309820634}{23206695755}$, $\frac{1}{57335135526479895} a^{16} + \frac{281431701913}{57335135526479895} a^{13} - \frac{344922640406}{167157829523265} a^{10} - \frac{1}{15} a^{9} - \frac{1}{3} a^{8} + \frac{21813216974741434}{57335135526479895} a^{7} - \frac{1}{5} a^{6} + \frac{1}{3} a^{5} - \frac{14233907054074}{33431565904653} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{106832227469}{487340610855} a + \frac{7}{15}$, $\frac{1}{401345948685359265} a^{17} + \frac{281431701913}{401345948685359265} a^{14} - \frac{344922640406}{1170104806662855} a^{11} - \frac{1}{15} a^{9} + \frac{32753354781127098}{133781982895119755} a^{8} - \frac{1}{3} a^{7} + \frac{2}{15} a^{6} - \frac{25377762355625}{234020961332571} a^{5} + \frac{1}{3} a^{4} - \frac{180985084557}{1137128091995} a^{2} + \frac{1}{3} a + \frac{2}{15}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1592843982.5010967 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{-13}) \), 3.1.108.1, 6.0.410012928.1, 9.1.11019960576.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||