Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 13 x^{15} + 33 x^{14} - 75 x^{13} + 169 x^{12} - 324 x^{11} + 657 x^{10} - 933 x^{9} + 1458 x^{8} - 2430 x^{7} + 3348 x^{6} - 3969 x^{5} + 5994 x^{4} - 4104 x^{3} + 2187 x^{2} - 486 x + 81 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-131264011932220807356100608=-\,2^{12}\cdot 3^{33}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{6} + \frac{1}{9} a^{5} + \frac{1}{3} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{6} + \frac{1}{9} a^{3} + \frac{1}{3}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{6} - \frac{4}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{81} a^{12} - \frac{1}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{81} a^{9} - \frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{4}{81} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{2}{27} a^{3} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{243} a^{13} - \frac{4}{81} a^{11} - \frac{1}{243} a^{10} - \frac{2}{81} a^{9} - \frac{1}{81} a^{8} - \frac{5}{243} a^{7} + \frac{10}{81} a^{6} - \frac{4}{27} a^{5} - \frac{1}{81} a^{4} + \frac{5}{27} a^{3} + \frac{10}{27} a - \frac{2}{9}$, $\frac{1}{243} a^{14} - \frac{10}{243} a^{11} + \frac{4}{81} a^{10} + \frac{4}{81} a^{9} + \frac{13}{243} a^{8} - \frac{2}{81} a^{7} + \frac{13}{81} a^{6} - \frac{1}{81} a^{5} + \frac{2}{27} a^{4} + \frac{8}{27} a^{3} - \frac{8}{27} a^{2} - \frac{2}{9} a - \frac{2}{9}$, $\frac{1}{2187} a^{15} - \frac{1}{729} a^{14} - \frac{1}{729} a^{13} - \frac{7}{2187} a^{12} + \frac{14}{729} a^{11} - \frac{10}{729} a^{10} - \frac{62}{2187} a^{9} + \frac{13}{243} a^{8} - \frac{2}{243} a^{7} + \frac{5}{243} a^{6} - \frac{7}{81} a^{5} + \frac{14}{81} a^{4} + \frac{17}{81} a^{3} - \frac{1}{9} a^{2} - \frac{23}{81}$, $\frac{1}{37179} a^{16} + \frac{5}{37179} a^{15} - \frac{2}{4131} a^{14} + \frac{50}{37179} a^{13} - \frac{149}{37179} a^{12} + \frac{14}{1377} a^{11} - \frac{599}{37179} a^{10} - \frac{8}{2187} a^{9} + \frac{160}{4131} a^{8} + \frac{145}{4131} a^{7} - \frac{299}{4131} a^{6} + \frac{173}{1377} a^{5} + \frac{6}{17} a^{4} - \frac{140}{1377} a^{3} + \frac{139}{459} a^{2} + \frac{40}{1377} a + \frac{131}{1377}$, $\frac{1}{711197091} a^{17} - \frac{4817}{711197091} a^{16} + \frac{14318}{237065697} a^{15} - \frac{244756}{711197091} a^{14} - \frac{31411}{19221543} a^{13} + \frac{286421}{79021899} a^{12} - \frac{4243061}{711197091} a^{11} - \frac{25196795}{711197091} a^{10} - \frac{6408146}{237065697} a^{9} + \frac{13360}{4648347} a^{8} + \frac{2793569}{79021899} a^{7} - \frac{43007}{516483} a^{6} - \frac{655084}{26340633} a^{5} + \frac{4233056}{26340633} a^{4} - \frac{312091}{8780211} a^{3} + \frac{11979586}{26340633} a^{2} + \frac{3060337}{26340633} a + \frac{887917}{8780211}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{41174}{13945041} a^{17} + \frac{342251}{41835123} a^{16} - \frac{226720}{13945041} a^{15} + \frac{167620}{4648347} a^{14} - \frac{104438}{1130679} a^{13} + \frac{957607}{4648347} a^{12} - \frac{6489958}{13945041} a^{11} + \frac{36927530}{41835123} a^{10} - \frac{25318280}{13945041} a^{9} + \frac{3847247}{1549449} a^{8} - \frac{18634082}{4648347} a^{7} + \frac{10281956}{1549449} a^{6} - \frac{4626214}{516483} a^{5} + \frac{16341283}{1549449} a^{4} - \frac{951680}{57387} a^{3} + \frac{5000630}{516483} a^{2} - \frac{9591916}{1549449} a + \frac{712468}{516483} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4215592.441455651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.972.2 x3, 6.0.2834352.2, 9.3.2204910445248.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ |
| 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.7 | $x^{6} + 21$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |