Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 68 x^{15} + 168 x^{14} - 306 x^{13} + 573 x^{12} - 924 x^{11} + 1896 x^{10} - 3246 x^{9} + 5061 x^{8} - 7056 x^{7} + 4823 x^{6} + 7056 x^{5} - 12348 x^{4} - 4900 x^{3} + 12348 x^{2} + 8232 x + 1372 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-131264011932220807356100608=-\,2^{12}\cdot 3^{33}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{12} + \frac{1}{14} a^{11} + \frac{1}{7} a^{9} - \frac{1}{2} a^{8} - \frac{5}{14} a^{7} + \frac{3}{7} a^{6} - \frac{1}{14} a^{4} - \frac{5}{14} a^{3}$, $\frac{1}{28} a^{13} - \frac{1}{28} a^{12} + \frac{5}{28} a^{11} + \frac{1}{14} a^{10} + \frac{3}{28} a^{9} + \frac{9}{28} a^{8} - \frac{5}{28} a^{7} + \frac{1}{14} a^{6} + \frac{13}{28} a^{5} - \frac{3}{28} a^{4} + \frac{3}{28} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{28} a^{14} + \frac{3}{28} a^{11} + \frac{5}{28} a^{10} + \frac{1}{7} a^{9} + \frac{1}{7} a^{8} - \frac{11}{28} a^{7} - \frac{9}{28} a^{6} + \frac{5}{14} a^{5} + \frac{1}{7} a^{4} + \frac{9}{28} a^{3} - \frac{1}{2}$, $\frac{1}{196} a^{15} + \frac{1}{196} a^{14} - \frac{5}{196} a^{12} + \frac{1}{7} a^{11} - \frac{19}{196} a^{10} + \frac{17}{98} a^{9} + \frac{13}{28} a^{8} + \frac{12}{49} a^{7} - \frac{61}{196} a^{6} - \frac{3}{14} a^{5} - \frac{1}{4} a^{4} + \frac{1}{28} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{31948} a^{16} - \frac{2}{1141} a^{15} + \frac{143}{15974} a^{14} + \frac{289}{31948} a^{13} + \frac{565}{31948} a^{12} + \frac{3361}{15974} a^{11} + \frac{1002}{7987} a^{10} - \frac{2225}{31948} a^{9} + \frac{349}{31948} a^{8} - \frac{4111}{15974} a^{7} + \frac{955}{7987} a^{6} + \frac{1483}{4564} a^{5} - \frac{69}{163} a^{4} - \frac{82}{1141} a^{3} - \frac{17}{326} a^{2} - \frac{36}{163} a + \frac{20}{163}$, $\frac{1}{980584081194588505065363688} a^{17} - \frac{367853687506062244036}{122573010149323563133170461} a^{16} + \frac{106415003651315076310661}{140083440170655500723623384} a^{15} + \frac{15222228664692590836829}{5002980006094839311557978} a^{14} - \frac{7483710123919120161437715}{490292040597294252532681844} a^{13} - \frac{2498800831746315074478054}{122573010149323563133170461} a^{12} - \frac{864677341388379196114447}{5417591608809881243455048} a^{11} - \frac{101886778450877396268814889}{490292040597294252532681844} a^{10} + \frac{64962168084763848860472347}{490292040597294252532681844} a^{9} + \frac{6958269853048507395400710}{17510430021331937590452923} a^{8} - \frac{282473475509893000894519435}{980584081194588505065363688} a^{7} + \frac{87172524433926562408530443}{490292040597294252532681844} a^{6} + \frac{43114323391105855956016315}{140083440170655500723623384} a^{5} - \frac{841095733620337189836985}{5002980006094839311557978} a^{4} - \frac{9908876712394916243821305}{70041720085327750361811692} a^{3} - \frac{1596877992069099563519559}{10005960012189678623115956} a^{2} - \frac{367098204251151289109413}{5002980006094839311557978} a - \frac{1614815662685031860760543}{5002980006094839311557978}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{13415990153565}{2938871985251944} a^{17} - \frac{10655322773073}{367358998156493} a^{16} + \frac{311774412341603}{2938871985251944} a^{15} - \frac{510958467829857}{1469435992625972} a^{14} + \frac{653173771452777}{734717996312986} a^{13} - \frac{2510073095473015}{1469435992625972} a^{12} + \frac{9438538895883753}{2938871985251944} a^{11} - \frac{3919935831974499}{734717996312986} a^{10} + \frac{3858834660259749}{367358998156493} a^{9} - \frac{27139813341638307}{1469435992625972} a^{8} + \frac{86690412720139233}{2938871985251944} a^{7} - \frac{31185671999204279}{734717996312986} a^{6} + \frac{15372947144017737}{419838855035992} a^{5} + \frac{4159700811160893}{209919427517996} a^{4} - \frac{13455334429467517}{209919427517996} a^{3} + \frac{21073636829091}{29988489645428} a^{2} + \frac{422367163755117}{7497122411357} a + \frac{266138791120197}{14994244822714} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2990563.699821467 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.972.2 x3, 6.0.2834352.2, 9.3.2204910445248.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |