Normalized defining polynomial
\( x^{18} - 9 x^{16} - 24 x^{15} + 57 x^{14} + 171 x^{13} + 78 x^{12} - 1398 x^{11} - 354 x^{10} + 2370 x^{9} + 7326 x^{8} - 11433 x^{7} + 823 x^{6} + 783 x^{5} + 55563 x^{4} + 3137 x^{3} + 48636 x^{2} - 42972 x + 9784 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1300691549639793389396484375=-\,3^{24}\cdot 5^{9}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{3}{10} a^{9} + \frac{2}{5} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10} a^{13} - \frac{1}{5} a^{11} + \frac{1}{10} a^{10} + \frac{1}{10} a^{9} - \frac{1}{5} a^{8} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} - \frac{1}{5} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{11} - \frac{1}{20} a^{10} + \frac{1}{10} a^{9} - \frac{1}{10} a^{8} + \frac{3}{20} a^{7} - \frac{1}{20} a^{5} - \frac{1}{20} a^{4} - \frac{2}{5} a^{3} + \frac{3}{20} a^{2} - \frac{3}{10} a - \frac{2}{5}$, $\frac{1}{100} a^{15} + \frac{1}{50} a^{14} - \frac{1}{50} a^{13} - \frac{1}{20} a^{12} + \frac{3}{20} a^{11} - \frac{2}{25} a^{10} - \frac{19}{50} a^{9} - \frac{3}{100} a^{8} - \frac{1}{2} a^{7} + \frac{3}{20} a^{6} - \frac{9}{20} a^{5} - \frac{12}{25} a^{4} - \frac{13}{100} a^{3} - \frac{3}{25} a^{2} + \frac{11}{25} a - \frac{8}{25}$, $\frac{1}{151300} a^{16} - \frac{263}{151300} a^{15} + \frac{3243}{151300} a^{14} + \frac{1031}{30260} a^{13} - \frac{83}{7565} a^{12} - \frac{13359}{75650} a^{11} + \frac{1087}{151300} a^{10} - \frac{37053}{151300} a^{9} - \frac{10243}{30260} a^{8} - \frac{1011}{15130} a^{7} + \frac{2043}{15130} a^{6} - \frac{681}{2225} a^{5} + \frac{29931}{75650} a^{4} + \frac{74863}{151300} a^{3} + \frac{50939}{151300} a^{2} - \frac{31921}{75650} a + \frac{1728}{7565}$, $\frac{1}{12117905985561708011349837035604700} a^{17} + \frac{2964401256092127648858591588}{3029476496390427002837459258901175} a^{16} - \frac{4011050660420380818394800775639}{3029476496390427002837459258901175} a^{15} - \frac{45529453571083149861845585301823}{12117905985561708011349837035604700} a^{14} - \frac{262372505564078277833758657961157}{12117905985561708011349837035604700} a^{13} - \frac{108014479301614186613304038149947}{3029476496390427002837459258901175} a^{12} + \frac{478967803220695277675133466947518}{3029476496390427002837459258901175} a^{11} + \frac{501852506305657195363667593385909}{12117905985561708011349837035604700} a^{10} - \frac{596215626460046664404474989930212}{3029476496390427002837459258901175} a^{9} - \frac{1507545430444263745858385764314343}{12117905985561708011349837035604700} a^{8} - \frac{237967178553596272629016200582825}{484716239422468320453993481424188} a^{7} - \frac{1415734670214206144380158575258627}{3029476496390427002837459258901175} a^{6} + \frac{2040955792159325448290217678837287}{12117905985561708011349837035604700} a^{5} + \frac{92035062265152285414291062758961}{1211790598556170801134983703560470} a^{4} - \frac{2908690863316192908258466157580627}{6058952992780854005674918517802350} a^{3} + \frac{1018695842849702698341782629010099}{3029476496390427002837459258901175} a^{2} - \frac{2798462191824512218927228016919633}{6058952992780854005674918517802350} a - \frac{834431398412387879025962877930318}{3029476496390427002837459258901175}$
Class group and class number
$C_{28}$, which has order $28$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56262.000163134624 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-55}) \), \(\Q(\zeta_{9})^+\), 3.1.891.1, 6.0.1091586375.2, 6.0.1091586375.3, 9.3.707347971.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |