Properties

Label 18.0.12972350387...9427.1
Degree $18$
Signature $[0, 9]$
Discriminant $-\,3^{9}\cdot 433^{6}$
Root discriminant $13.10$
Ramified primes $3, 433$
Class number $1$
Class group Trivial
Galois group $S_3\wr C_2$ (as 18T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, 2, 1, 4, -5, 2, 0, 10, -2, 4, 3, 7, 1, -1, 4, 1, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 + x^16 + 4*x^15 - x^14 + x^13 + 7*x^12 + 3*x^11 + 4*x^10 - 2*x^9 + 10*x^8 + 2*x^6 - 5*x^5 + 4*x^4 + x^3 + 2*x^2 - x + 1)
 
gp: K = bnfinit(x^18 - x^17 + x^16 + 4*x^15 - x^14 + x^13 + 7*x^12 + 3*x^11 + 4*x^10 - 2*x^9 + 10*x^8 + 2*x^6 - 5*x^5 + 4*x^4 + x^3 + 2*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - x^{17} + x^{16} + 4 x^{15} - x^{14} + x^{13} + 7 x^{12} + 3 x^{11} + 4 x^{10} - 2 x^{9} + 10 x^{8} + 2 x^{6} - 5 x^{5} + 4 x^{4} + x^{3} + 2 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-129723503874804239427=-\,3^{9}\cdot 433^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 433$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{13} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{14} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{1986} a^{17} + \frac{11}{662} a^{16} + \frac{65}{993} a^{15} + \frac{121}{1986} a^{14} - \frac{95}{993} a^{13} - \frac{85}{993} a^{12} - \frac{73}{993} a^{11} - \frac{109}{662} a^{10} - \frac{191}{1986} a^{9} - \frac{269}{993} a^{8} - \frac{77}{1986} a^{7} + \frac{346}{993} a^{6} - \frac{151}{993} a^{5} + \frac{325}{993} a^{4} - \frac{245}{662} a^{3} + \frac{167}{1986} a^{2} - \frac{139}{993} a - \frac{185}{1986}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{113}{662} a^{17} + \frac{44}{331} a^{16} - \frac{142}{993} a^{15} + \frac{815}{993} a^{14} + \frac{1226}{993} a^{13} - \frac{343}{662} a^{12} + \frac{1811}{1986} a^{11} + \frac{5659}{1986} a^{10} + \frac{1451}{1986} a^{9} - \frac{221}{662} a^{8} + \frac{685}{993} a^{7} + \frac{1073}{662} a^{6} + \frac{149}{331} a^{5} - \frac{5723}{1986} a^{4} - \frac{292}{993} a^{3} + \frac{668}{993} a^{2} + \frac{693}{662} a + \frac{175}{1986} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 979.022125559 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\wr C_2$ (as 18T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 72
The 9 conjugacy class representatives for $S_3\wr C_2$
Character table for $S_3\wr C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 6.0.11691.1 x2, 9.3.2191933899.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: 6.0.11691.1, 6.4.243548211.1
Degree 9 sibling: 9.3.2191933899.1
Degree 12 siblings: Deg 12, 12.0.59182215273.1, Deg 12, Deg 12, Deg 12, Deg 12
Degree 18 siblings: Deg 18, Deg 18

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
433Data not computed