Normalized defining polynomial
\( x^{18} - 3 x^{17} + 5 x^{16} + 3 x^{14} - 47 x^{13} + 109 x^{12} - 65 x^{11} - 52 x^{10} + 192 x^{9} + 188 x^{8} + 192 x^{7} + 210 x^{6} + 135 x^{5} + 72 x^{4} + 41 x^{3} + 10 x^{2} - x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-129572244330949414435923=-\,3^{9}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{9} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{588} a^{15} - \frac{1}{294} a^{14} + \frac{19}{588} a^{13} - \frac{43}{294} a^{12} + \frac{57}{196} a^{11} - \frac{13}{84} a^{10} - \frac{15}{49} a^{9} - \frac{6}{49} a^{8} - \frac{281}{588} a^{7} - \frac{253}{588} a^{6} + \frac{107}{588} a^{5} - \frac{23}{147} a^{4} + \frac{37}{196} a^{3} + \frac{25}{84} a^{2} - \frac{27}{196} a + \frac{145}{588}$, $\frac{1}{59388} a^{16} - \frac{5}{8484} a^{15} + \frac{61}{588} a^{14} + \frac{9479}{59388} a^{13} + \frac{6341}{59388} a^{12} + \frac{6443}{29694} a^{11} - \frac{7291}{19796} a^{10} - \frac{99}{4949} a^{9} + \frac{9453}{19796} a^{8} - \frac{2890}{14847} a^{7} - \frac{377}{2121} a^{6} + \frac{4217}{59388} a^{5} + \frac{6283}{59388} a^{4} - \frac{3910}{14847} a^{3} + \frac{986}{14847} a^{2} - \frac{11527}{29694} a - \frac{11449}{59388}$, $\frac{1}{17843183988} a^{17} - \frac{715}{424837714} a^{16} + \frac{2117498}{4460795997} a^{15} + \frac{228872738}{4460795997} a^{14} - \frac{1268878277}{8921591994} a^{13} - \frac{1483651201}{17843183988} a^{12} + \frac{7623597019}{17843183988} a^{11} - \frac{1740906487}{17843183988} a^{10} + \frac{1924255813}{5947727996} a^{9} + \frac{1379548507}{17843183988} a^{8} - \frac{1012413621}{2973863998} a^{7} - \frac{5517480649}{17843183988} a^{6} + \frac{42981637}{182073306} a^{5} - \frac{32019277}{849675428} a^{4} + \frac{4402083755}{8921591994} a^{3} + \frac{1807770413}{4460795997} a^{2} + \frac{5192447383}{17843183988} a - \frac{5935077515}{17843183988}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2520941}{176665188} a^{17} - \frac{4401374}{44166297} a^{16} + \frac{23339391}{58888396} a^{15} - \frac{37722481}{44166297} a^{14} + \frac{42424189}{176665188} a^{13} + \frac{12680585}{176665188} a^{12} + \frac{476642459}{88332594} a^{11} - \frac{735120485}{44166297} a^{10} + \frac{2738471089}{176665188} a^{9} - \frac{70185443}{58888396} a^{8} - \frac{710653079}{25237884} a^{7} - \frac{694073969}{29444198} a^{6} - \frac{1514997517}{58888396} a^{5} - \frac{4475985025}{176665188} a^{4} - \frac{2426246005}{176665188} a^{3} - \frac{1283012159}{176665188} a^{2} - \frac{11983771}{4206314} a + \frac{6116627}{14722099} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25740.6797756 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.4107.1 x3, 3.3.1369.1, 6.0.50602347.2, 6.0.50602347.1, 6.0.36963.1 x2, 9.3.69274613043.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.36963.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |