Normalized defining polynomial
\( x^{18} - 2 x^{17} + 2 x^{16} - 18 x^{15} + 60 x^{14} - 120 x^{13} + 282 x^{12} - 692 x^{11} + 1220 x^{10} - 2192 x^{9} + 4680 x^{8} - 7056 x^{7} + 8592 x^{6} - 11776 x^{5} + 11008 x^{4} - 5376 x^{3} + 4096 x^{2} - 4096 x + 2048 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-128536820158464000000000000=-\,2^{24}\cdot 3^{22}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4}$, $\frac{1}{16} a^{11} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{13} - \frac{1}{16} a^{10} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{64} a^{14} - \frac{1}{32} a^{11} - \frac{1}{16} a^{9} + \frac{1}{32} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4}$, $\frac{1}{128} a^{15} - \frac{1}{64} a^{13} - \frac{1}{64} a^{12} + \frac{1}{64} a^{9} - \frac{1}{8} a^{8} + \frac{3}{32} a^{7} + \frac{1}{8} a^{6} + \frac{3}{16} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{15104} a^{16} + \frac{11}{7552} a^{15} + \frac{3}{7552} a^{14} - \frac{37}{7552} a^{13} - \frac{35}{3776} a^{12} + \frac{23}{944} a^{11} - \frac{299}{7552} a^{10} - \frac{49}{3776} a^{9} - \frac{7}{64} a^{8} + \frac{7}{236} a^{7} - \frac{77}{1888} a^{6} - \frac{107}{944} a^{5} - \frac{265}{944} a^{4} - \frac{22}{59} a^{3} - \frac{29}{236} a^{2} + \frac{5}{59} a - \frac{18}{59}$, $\frac{1}{96677558331516416} a^{17} + \frac{138209432613}{48338779165758208} a^{16} + \frac{160978946972491}{48338779165758208} a^{15} - \frac{24472580494149}{48338779165758208} a^{14} + \frac{205602228430991}{24169389582879104} a^{13} + \frac{18070462822421}{3021173697859888} a^{12} - \frac{512800685718339}{48338779165758208} a^{11} - \frac{905384891481207}{24169389582879104} a^{10} + \frac{1326352340289755}{24169389582879104} a^{9} - \frac{188366650023135}{1510586848929944} a^{8} - \frac{2000989262935089}{12084694791439552} a^{7} - \frac{752107397394427}{6042347395719776} a^{6} - \frac{413430758030821}{6042347395719776} a^{5} + \frac{9155392435327}{25603166931016} a^{4} + \frac{69157281742971}{1510586848929944} a^{3} - \frac{127883725946865}{377646712232486} a^{2} + \frac{1221933607058}{188823356116243} a - \frac{94067192474992}{188823356116243}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{384086823341}{409650670896256} a^{17} - \frac{44787477923}{51206333862032} a^{16} + \frac{382570375217}{409650670896256} a^{15} - \frac{396529562139}{25603166931016} a^{14} + \frac{8138547897961}{204825335448128} a^{13} - \frac{14212421500571}{204825335448128} a^{12} + \frac{37605257150095}{204825335448128} a^{11} - \frac{5648788520079}{12801583465508} a^{10} + \frac{133133438695405}{204825335448128} a^{9} - \frac{131930496688767}{102412667724064} a^{8} + \frac{293062631054767}{102412667724064} a^{7} - \frac{85698078918827}{25603166931016} a^{6} + \frac{202334526274865}{51206333862032} a^{5} - \frac{148785471030699}{25603166931016} a^{4} + \frac{82390907550621}{25603166931016} a^{3} - \frac{30182753300}{3200395866377} a^{2} + \frac{4848106204655}{3200395866377} a - \frac{4803512755001}{3200395866377} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5283323.889324977 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.300.1, 6.0.1440000.1, 9.3.177147000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.22.83 | $x^{12} + 27 x^{11} - 27 x^{10} + 3 x^{9} - 9 x^{8} - 36 x^{7} - 9 x^{6} + 27 x^{5} + 36 x^{3} + 27 x + 36$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[5/2]_{2}^{6}$ | |
| $5$ | 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |