Normalized defining polynomial
\( x^{18} - 6 x^{15} - 32 x^{14} - 24 x^{13} + 18 x^{12} - 12 x^{11} - 36 x^{10} + 180 x^{9} + 936 x^{8} + 2592 x^{7} + 5328 x^{6} + 8568 x^{5} + 10800 x^{4} + 10368 x^{3} + 7056 x^{2} + 3024 x + 648 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-128536820158464000000000000=-\,2^{24}\cdot 3^{22}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{6}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{7}$, $\frac{1}{84} a^{12} + \frac{1}{14} a^{11} + \frac{1}{21} a^{10} + \frac{3}{14} a^{9} + \frac{1}{21} a^{8} + \frac{3}{14} a^{7} + \frac{4}{21} a^{6} + \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{2} - \frac{2}{7} a - \frac{1}{7}$, $\frac{1}{84} a^{13} - \frac{1}{21} a^{11} - \frac{1}{14} a^{10} - \frac{5}{21} a^{9} - \frac{1}{14} a^{8} + \frac{5}{21} a^{7} - \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{3} + \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{84} a^{14} + \frac{1}{21} a^{11} - \frac{1}{21} a^{10} - \frac{3}{14} a^{9} - \frac{1}{14} a^{8} + \frac{4}{21} a^{7} + \frac{5}{42} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} + \frac{3}{7} a^{2} - \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{84} a^{15} - \frac{1}{14} a^{10} + \frac{1}{14} a^{9} + \frac{2}{21} a^{7} - \frac{1}{7} a^{6} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{1}{7} a^{2} - \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{252} a^{16} + \frac{1}{252} a^{12} - \frac{1}{14} a^{10} - \frac{2}{21} a^{9} - \frac{5}{42} a^{8} + \frac{1}{42} a^{7} - \frac{3}{14} a^{6} - \frac{3}{7} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{30651999446628} a^{17} - \frac{1516114375}{851444429073} a^{16} - \frac{8304627713}{1702888858146} a^{15} - \frac{52472492783}{10217333148876} a^{14} - \frac{12445023629}{4378857063804} a^{13} + \frac{4208581829}{5108666574438} a^{12} + \frac{40855091597}{1702888858146} a^{11} + \frac{156943952996}{2554333287219} a^{10} - \frac{418507770955}{1702888858146} a^{9} - \frac{28450154342}{851444429073} a^{8} + \frac{72369396146}{851444429073} a^{7} - \frac{271118520901}{1702888858146} a^{6} - \frac{127481954801}{851444429073} a^{5} - \frac{330541983425}{851444429073} a^{4} - \frac{113558195025}{283814809691} a^{3} + \frac{61786187931}{283814809691} a^{2} - \frac{417030389948}{851444429073} a + \frac{59931139693}{283814809691}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{48045741259}{4378857063804} a^{17} + \frac{4337729276}{364904755317} a^{16} - \frac{2321899505}{162179891252} a^{15} + \frac{60831751489}{729809510634} a^{14} + \frac{282978273920}{1094714265951} a^{13} - \frac{2319442982}{364904755317} a^{12} - \frac{6366705854}{40544972813} a^{11} + \frac{103331976403}{364904755317} a^{10} + \frac{3455407381}{40544972813} a^{9} - \frac{246650242733}{121634918439} a^{8} - \frac{982922858468}{121634918439} a^{7} - \frac{2427672117752}{121634918439} a^{6} - \frac{4598719841878}{121634918439} a^{5} - \frac{6727773298474}{121634918439} a^{4} - \frac{2542942545079}{40544972813} a^{3} - \frac{2090926650252}{40544972813} a^{2} - \frac{3419287637824}{121634918439} a - \frac{321487286303}{40544972813} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 836391.5690201633 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.300.1, 6.0.1440000.1, 9.3.177147000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.12.22.67 | $x^{12} + 99 x^{11} + 117 x^{10} - 114 x^{9} - 81 x^{8} + 9 x^{7} - 15 x^{6} + 54 x^{5} - 108 x^{4} + 45 x^{3} - 81 x^{2} - 108 x - 72$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| $5$ | 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |