Normalized defining polynomial
\( x^{18} - 21 x^{15} + 414 x^{14} + 828 x^{13} + 4281 x^{12} - 2394 x^{11} + 26370 x^{10} - 47605 x^{9} + 161568 x^{8} - 567216 x^{7} + 890862 x^{6} - 1532268 x^{5} + 3698316 x^{4} - 5016612 x^{3} + 4302216 x^{2} - 2485872 x + 666832 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-128323613672506363698737006390636544=-\,2^{12}\cdot 3^{45}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{6} + \frac{1}{6} a^{3} + \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{2} a^{7} + \frac{1}{6} a^{4} + \frac{1}{3} a$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{13} + \frac{1}{18} a^{12} + \frac{1}{18} a^{11} - \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{18} a^{5} - \frac{1}{18} a^{4} + \frac{1}{18} a^{3} + \frac{2}{9} a^{2} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{36} a^{15} - \frac{1}{36} a^{12} - \frac{1}{6} a^{10} - \frac{5}{36} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{7}{36} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{32436} a^{16} - \frac{389}{32436} a^{15} - \frac{145}{8109} a^{14} - \frac{749}{10812} a^{13} + \frac{1525}{32436} a^{12} - \frac{505}{8109} a^{11} + \frac{3365}{32436} a^{10} - \frac{3}{212} a^{9} - \frac{539}{2703} a^{8} - \frac{7025}{32436} a^{7} + \frac{11311}{32436} a^{6} + \frac{4849}{16218} a^{5} + \frac{1129}{5406} a^{4} + \frac{3491}{16218} a^{3} - \frac{2029}{8109} a^{2} - \frac{25}{8109} a + \frac{244}{2703}$, $\frac{1}{867227375085663237038446554691648781719704784488} a^{17} + \frac{963756319359058556765349024400907794909595}{433613687542831618519223277345824390859852392244} a^{16} - \frac{3459819141951752799720341090460630113751171667}{433613687542831618519223277345824390859852392244} a^{15} - \frac{4435056546006651719574639772791108423086066377}{867227375085663237038446554691648781719704784488} a^{14} - \frac{4175915614318970825355179749027646697249935174}{108403421885707904629805819336456097714963098061} a^{13} - \frac{5938126617773107861054930615824196413681295469}{433613687542831618519223277345824390859852392244} a^{12} - \frac{71983751415574547945596892227324087492185606563}{867227375085663237038446554691648781719704784488} a^{11} + \frac{6184376993205787639756916955990953634311416979}{108403421885707904629805819336456097714963098061} a^{10} - \frac{10686927324562267369562583109298608061934351185}{216806843771415809259611638672912195429926196122} a^{9} - \frac{142775775938477208298864956814024112371865171105}{867227375085663237038446554691648781719704784488} a^{8} - \frac{139618596562132161836726561390720716825391571697}{433613687542831618519223277345824390859852392244} a^{7} - \frac{90118236110934275441130647342479631953201090621}{433613687542831618519223277345824390859852392244} a^{6} - \frac{68315817889779287863426439776166012449372671773}{433613687542831618519223277345824390859852392244} a^{5} + \frac{51573627664843060655937148840001203973032861883}{216806843771415809259611638672912195429926196122} a^{4} + \frac{51394949526491277821290603479494691203886268571}{216806843771415809259611638672912195429926196122} a^{3} + \frac{31428597754263577812781291374096010033419539797}{216806843771415809259611638672912195429926196122} a^{2} - \frac{19678024289287876494035698065522271204638680371}{108403421885707904629805819336456097714963098061} a - \frac{28812351742738465613357404624560064892500022077}{108403421885707904629805819336456097714963098061}$
Class group and class number
$C_{2}\times C_{36}$, which has order $72$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2199571857.9102173 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-39}) \), 3.1.243.1, 6.0.389191959.7, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |