Normalized defining polynomial
\( x^{18} - 3 x^{17} + 6 x^{16} - 9 x^{15} + 3 x^{14} + 18 x^{13} - 47 x^{12} + 90 x^{11} - 87 x^{10} + 43 x^{9} + 63 x^{8} - 186 x^{7} + 274 x^{6} - 270 x^{5} + 198 x^{4} - 106 x^{3} + 39 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12827848719622496283=-\,3^{27}\cdot 1297^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11331399151} a^{17} - \frac{5012802240}{11331399151} a^{16} - \frac{332300229}{11331399151} a^{15} - \frac{3807216236}{11331399151} a^{14} + \frac{1648854709}{11331399151} a^{13} - \frac{76066867}{11331399151} a^{12} - \frac{3914875299}{11331399151} a^{11} + \frac{3602980441}{11331399151} a^{10} + \frac{1405698519}{11331399151} a^{9} + \frac{204808519}{11331399151} a^{8} + \frac{2080157976}{11331399151} a^{7} + \frac{1759198270}{11331399151} a^{6} + \frac{4074136241}{11331399151} a^{5} - \frac{1683044718}{11331399151} a^{4} + \frac{1573467686}{11331399151} a^{3} + \frac{2111109130}{11331399151} a^{2} - \frac{2166427783}{11331399151} a + \frac{2225142671}{11331399151}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{35352706938}{11331399151} a^{17} + \frac{90854094538}{11331399151} a^{16} - \frac{172876998924}{11331399151} a^{15} + \frac{242261203095}{11331399151} a^{14} + \frac{1668131236}{11331399151} a^{13} - \frac{641319898088}{11331399151} a^{12} + \frac{1391708984120}{11331399151} a^{11} - \frac{2577536726340}{11331399151} a^{10} + \frac{1939234074618}{11331399151} a^{9} - \frac{636677436344}{11331399151} a^{8} - \frac{2576010774093}{11331399151} a^{7} + \frac{5507921744460}{11331399151} a^{6} - \frac{7298219065135}{11331399151} a^{5} + \frac{6299662986481}{11331399151} a^{4} - \frac{4104563025992}{11331399151} a^{3} + \frac{1784458218203}{11331399151} a^{2} - \frac{470870344327}{11331399151} a + \frac{52125926226}{11331399151} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 784.727413524 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 34 conjugacy class representatives for t18n286 |
| Character table for t18n286 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{9})\), 9.5.689278977.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 1297 | Data not computed | ||||||