Normalized defining polynomial
\( x^{18} - 9 x^{15} - 54 x^{14} + 72 x^{13} + 387 x^{12} - 540 x^{11} - 1836 x^{10} + 960 x^{9} + 5346 x^{8} + 972 x^{7} - 4617 x^{6} + 162 x^{5} + 11556 x^{4} + 15660 x^{3} + 13284 x^{2} + 8424 x + 3303 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-128225377888491045948046875=-\,3^{43}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{3} a^{12}$, $\frac{1}{3} a^{13}$, $\frac{1}{9} a^{14} + \frac{1}{3} a^{5}$, $\frac{1}{9} a^{15} + \frac{1}{3} a^{6}$, $\frac{1}{3015} a^{16} + \frac{103}{3015} a^{15} + \frac{161}{3015} a^{14} - \frac{20}{201} a^{13} + \frac{12}{335} a^{12} - \frac{6}{335} a^{11} + \frac{9}{335} a^{10} + \frac{10}{201} a^{9} + \frac{164}{335} a^{8} - \frac{59}{1005} a^{7} - \frac{116}{1005} a^{6} - \frac{202}{1005} a^{5} - \frac{99}{335} a^{4} + \frac{93}{335} a^{3} + \frac{3}{67} a^{2} + \frac{106}{335} a + \frac{59}{335}$, $\frac{1}{12334074502751072514174676896495} a^{17} - \frac{339684609810712781349292828}{4111358167583690838058225632165} a^{16} + \frac{29944665642070778453972383075}{2466814900550214502834935379299} a^{15} + \frac{658584038526423175856804803823}{12334074502751072514174676896495} a^{14} + \frac{187139031775567583939530024437}{1370452722527896946019408544055} a^{13} - \frac{97167102295170233716637265127}{822271633516738167611645126433} a^{12} - \frac{191877362044420835182572236177}{4111358167583690838058225632165} a^{11} - \frac{93880368198047263311917600303}{1370452722527896946019408544055} a^{10} - \frac{64163858534628086780156640086}{1370452722527896946019408544055} a^{9} - \frac{471278451947377708175497597868}{4111358167583690838058225632165} a^{8} - \frac{45926875081543014449127852251}{1370452722527896946019408544055} a^{7} - \frac{251282762032494029651468930270}{822271633516738167611645126433} a^{6} - \frac{1189775026377768343966282381333}{4111358167583690838058225632165} a^{5} + \frac{58090235180146928416915179206}{1370452722527896946019408544055} a^{4} + \frac{22708510338478711607658561864}{1370452722527896946019408544055} a^{3} + \frac{202908702833844313756320572266}{1370452722527896946019408544055} a^{2} + \frac{368542434223947214597681543327}{1370452722527896946019408544055} a - \frac{294505233208457985114694607648}{1370452722527896946019408544055}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11318495344569020}{36805902353098824601} a^{17} + \frac{21045731337996484}{36805902353098824601} a^{16} - \frac{62758891250893486}{110417707059296473803} a^{15} + \frac{117673835786826818}{36805902353098824601} a^{14} + \frac{413325837809012696}{36805902353098824601} a^{13} - \frac{1763983852337497839}{36805902353098824601} a^{12} - \frac{1861970029668845248}{36805902353098824601} a^{11} + \frac{11965277934703649096}{36805902353098824601} a^{10} + \frac{8922659867354334449}{110417707059296473803} a^{9} - \frac{32782098580665636678}{36805902353098824601} a^{8} - \frac{14397705110028220404}{36805902353098824601} a^{7} + \frac{57863669014594855619}{36805902353098824601} a^{6} - \frac{4824084155602955394}{36805902353098824601} a^{5} - \frac{50262932969501381304}{36805902353098824601} a^{4} - \frac{70257591514868044263}{36805902353098824601} a^{3} - \frac{13277213549750899398}{36805902353098824601} a^{2} + \frac{274656442026671196}{36805902353098824601} a + \frac{30977460612645265657}{36805902353098824601} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1407082.5964197547 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 6.0.177147.2, 9.3.6537720751875.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |