Normalized defining polynomial
\( x^{18} - 9 x^{17} + 45 x^{16} - 156 x^{15} + 468 x^{14} - 1260 x^{13} + 3030 x^{12} - 6246 x^{11} + 10674 x^{10} - 14848 x^{9} + 20736 x^{8} - 31284 x^{7} + 47481 x^{6} - 59265 x^{5} + 52641 x^{4} - 31188 x^{3} + 11772 x^{2} - 2592 x + 256 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-128225377888491045948046875=-\,3^{43}\cdot 5^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{160} a^{12} - \frac{3}{80} a^{11} + \frac{1}{20} a^{10} - \frac{1}{32} a^{9} + \frac{1}{40} a^{7} - \frac{37}{160} a^{6} - \frac{7}{80} a^{5} - \frac{1}{5} a^{4} - \frac{31}{160} a^{3} - \frac{13}{40} a^{2} + \frac{1}{40} a + \frac{1}{5}$, $\frac{1}{160} a^{13} - \frac{1}{20} a^{11} + \frac{3}{160} a^{10} - \frac{1}{16} a^{9} + \frac{1}{40} a^{8} + \frac{27}{160} a^{7} - \frac{9}{40} a^{6} + \frac{3}{20} a^{5} + \frac{17}{160} a^{4} - \frac{29}{80} a^{3} + \frac{3}{40} a^{2} + \frac{7}{20} a + \frac{1}{5}$, $\frac{1}{160} a^{14} - \frac{1}{32} a^{11} - \frac{3}{80} a^{10} + \frac{1}{40} a^{9} + \frac{7}{160} a^{8} + \frac{9}{40} a^{7} + \frac{1}{20} a^{6} - \frac{3}{32} a^{5} - \frac{7}{80} a^{4} + \frac{1}{40} a^{3} - \frac{3}{8} a^{2} - \frac{7}{20} a - \frac{2}{5}$, $\frac{1}{160} a^{15} + \frac{1}{40} a^{11} + \frac{1}{40} a^{10} + \frac{1}{80} a^{9} - \frac{1}{40} a^{8} + \frac{7}{40} a^{7} - \frac{1}{40} a^{5} - \frac{9}{40} a^{4} - \frac{7}{32} a^{3} + \frac{1}{40} a^{2} + \frac{9}{40} a$, $\frac{1}{416372480} a^{16} - \frac{1}{52046560} a^{15} - \frac{10835}{5204656} a^{14} + \frac{215771}{104093120} a^{13} - \frac{12059}{26023280} a^{12} + \frac{1995061}{52046560} a^{11} + \frac{12875199}{208186240} a^{10} + \frac{321233}{5204656} a^{9} - \frac{4531061}{104093120} a^{8} - \frac{13788317}{104093120} a^{7} - \frac{123877}{26023280} a^{6} + \frac{1098137}{13011640} a^{5} - \frac{63610663}{416372480} a^{4} + \frac{2913603}{10409312} a^{3} + \frac{17156947}{104093120} a^{2} + \frac{3161517}{13011640} a + \frac{467617}{1626455}$, $\frac{1}{416372480} a^{17} - \frac{54179}{26023280} a^{15} - \frac{43333}{20818624} a^{14} - \frac{136907}{52046560} a^{13} - \frac{149629}{52046560} a^{12} + \frac{11658951}{208186240} a^{11} + \frac{11829}{52046560} a^{10} + \frac{4863}{20818624} a^{9} + \frac{3310919}{104093120} a^{8} + \frac{2386843}{10409312} a^{7} + \frac{5434041}{26023280} a^{6} + \frac{2906165}{83274496} a^{5} - \frac{1155789}{10409312} a^{4} - \frac{43817877}{104093120} a^{3} + \frac{475713}{13011640} a^{2} - \frac{274358}{1626455} a - \frac{487847}{1626455}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{253363503}{10409312} a^{17} + \frac{4307179551}{20818624} a^{16} - \frac{5162273991}{5204656} a^{15} + \frac{34362314355}{10409312} a^{14} - \frac{101392418595}{10409312} a^{13} + \frac{268540066197}{10409312} a^{12} - \frac{633416306799}{10409312} a^{11} + \frac{158223383043}{1301164} a^{10} - \frac{2071477875475}{10409312} a^{9} + \frac{2726143086615}{10409312} a^{8} - \frac{3890581079325}{10409312} a^{7} + \frac{5980817237307}{10409312} a^{6} - \frac{4519684708275}{5204656} a^{5} + \frac{20991269877465}{20818624} a^{4} - \frac{8089086517455}{10409312} a^{3} + \frac{1928465534649}{5204656} a^{2} - \frac{263460451443}{2602328} a + \frac{4052880846}{325291} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13278706.348526606 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.243.1 x3, 6.0.177147.2, 9.3.6537720751875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |