Normalized defining polynomial
\( x^{18} - 3 x^{17} + 10 x^{16} + 91 x^{15} + 151 x^{14} + 34 x^{13} + 3415 x^{12} + 14395 x^{11} + 29125 x^{10} - 21192 x^{9} - 97073 x^{8} - 90513 x^{7} + 153009 x^{6} + 344700 x^{5} - 49059 x^{4} - 421497 x^{3} - 92718 x^{2} + 222021 x + 111051 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-127192258415404127890787986833408=-\,2^{20}\cdot 3^{9}\cdot 151^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{4}{9} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{27} a^{9} + \frac{1}{27} a^{8} + \frac{2}{27} a^{7} + \frac{4}{27} a^{6} + \frac{7}{27} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{54} a^{12} - \frac{1}{54} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{8} + \frac{1}{18} a^{7} - \frac{2}{27} a^{6} - \frac{5}{54} a^{5} - \frac{1}{2} a^{4} - \frac{1}{9} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{54} a^{13} + \frac{1}{54} a^{10} - \frac{1}{54} a^{9} - \frac{1}{27} a^{8} - \frac{5}{54} a^{7} + \frac{1}{54} a^{6} + \frac{1}{27} a^{5} + \frac{7}{18} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{486} a^{14} - \frac{1}{486} a^{13} + \frac{1}{486} a^{12} - \frac{1}{243} a^{11} + \frac{23}{486} a^{10} - \frac{5}{486} a^{9} + \frac{8}{243} a^{8} - \frac{55}{486} a^{7} - \frac{5}{486} a^{6} + \frac{32}{81} a^{5} - \frac{7}{162} a^{4} - \frac{17}{54} a^{3} - \frac{23}{54} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{486} a^{15} - \frac{1}{486} a^{12} + \frac{1}{162} a^{11} - \frac{25}{486} a^{9} - \frac{1}{162} a^{8} + \frac{2}{81} a^{7} + \frac{7}{486} a^{6} - \frac{1}{54} a^{5} - \frac{38}{81} a^{4} + \frac{1}{27} a^{3} + \frac{19}{54} a^{2} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{3402} a^{16} - \frac{1}{3402} a^{14} + \frac{1}{189} a^{13} + \frac{10}{1701} a^{12} - \frac{17}{1701} a^{11} + \frac{1}{567} a^{10} + \frac{82}{1701} a^{9} + \frac{79}{1701} a^{8} + \frac{184}{1701} a^{7} - \frac{11}{1701} a^{6} + \frac{260}{567} a^{5} - \frac{113}{1134} a^{4} + \frac{8}{21} a^{3} - \frac{43}{378} a^{2} - \frac{13}{63} a - \frac{8}{21}$, $\frac{1}{2057732475293455773883803414633042} a^{17} - \frac{23137102812358058374847953889}{158287113484111982606446416510234} a^{16} + \frac{882155892301979579399919600677}{2057732475293455773883803414633042} a^{15} - \frac{227882011721563576461533756939}{342955412548909295647300569105507} a^{14} - \frac{745045005103580216763940836994}{146980891092389698134557386759503} a^{13} - \frac{3793547888862600554933580139370}{1028866237646727886941901707316521} a^{12} + \frac{10821220252504338163745449728829}{685910825097818591294601138211014} a^{11} + \frac{112905109682618225245826369406115}{2057732475293455773883803414633042} a^{10} - \frac{5894439517482440919046221015569}{1028866237646727886941901707316521} a^{9} + \frac{65909485268450530306643448878345}{2057732475293455773883803414633042} a^{8} + \frac{426587826610329562574566291505}{3629157804750362916902651524926} a^{7} - \frac{27295316350371669088685453132782}{342955412548909295647300569105507} a^{6} + \frac{917380378424738035046262048722}{114318470849636431882433523035169} a^{5} + \frac{76670744968788423494418869638}{574464677636363979308711171031} a^{4} + \frac{224206635595685891937704876771}{3629157804750362916902651524926} a^{3} - \frac{5778312336157572059902345961065}{25404104633252540418318560674482} a^{2} - \frac{211386213732866114041843250779}{651387298288526677392783607038} a - \frac{701118893367585622411736885205}{1411339146291807801017697815249}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{297315354830625725}{2182365564981978672063} a^{17} + \frac{1214305770600668876}{2182365564981978672063} a^{16} - \frac{8473984410150345367}{4364731129963957344126} a^{15} - \frac{45362029987017806209}{4364731129963957344126} a^{14} - \frac{39000447423334776965}{4364731129963957344126} a^{13} + \frac{14869738806380916730}{2182365564981978672063} a^{12} - \frac{2055594753431207547001}{4364731129963957344126} a^{11} - \frac{6331028965883345065769}{4364731129963957344126} a^{10} - \frac{5041295140694853050192}{2182365564981978672063} a^{9} + \frac{8210584184673992140823}{1454910376654652448042} a^{8} + \frac{10994171243113242672469}{1454910376654652448042} a^{7} + \frac{800586997084220703217}{242485062775775408007} a^{6} - \frac{12287494082943167480429}{484970125551550816014} a^{5} - \frac{3300969313035205355117}{161656708517183605338} a^{4} + \frac{5287346800635609458101}{161656708517183605338} a^{3} + \frac{669343280074647520630}{26942784752863934223} a^{2} - \frac{481667236537586183171}{26942784752863934223} a - \frac{109867102990607432974}{8980928250954644741} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45444000566.5836 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1812.1, 6.0.9850032.2, 6.0.9850032.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $151$ | 151.3.2.2 | $x^{3} + 755$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 151.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 151.6.3.1 | $x^{6} - 302 x^{4} + 22801 x^{2} - 86073775$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 151.6.5.3 | $x^{6} - 94375$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |