Normalized defining polynomial
\( x^{18} + 204 x^{16} - 6 x^{15} + 14787 x^{14} - 354 x^{13} + 387161 x^{12} - 51156 x^{11} + 863727 x^{10} - 952408 x^{9} + 18104562 x^{8} + 12264582 x^{7} + 50853848 x^{6} - 22106286 x^{5} + 191128917 x^{4} + 248399886 x^{3} + 1056948351 x^{2} + 752535174 x + 1084437811 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12639964587166968704098411698997775327821824=-\,2^{27}\cdot 3^{24}\cdot 37^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $248.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2664=2^{3}\cdot 3^{2}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2664}(1,·)$, $\chi_{2664}(619,·)$, $\chi_{2664}(1897,·)$, $\chi_{2664}(1507,·)$, $\chi_{2664}(433,·)$, $\chi_{2664}(2515,·)$, $\chi_{2664}(889,·)$, $\chi_{2664}(2395,·)$, $\chi_{2664}(2209,·)$, $\chi_{2664}(1627,·)$, $\chi_{2664}(2083,·)$, $\chi_{2664}(1777,·)$, $\chi_{2664}(1321,·)$, $\chi_{2664}(1195,·)$, $\chi_{2664}(1009,·)$, $\chi_{2664}(307,·)$, $\chi_{2664}(739,·)$, $\chi_{2664}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{44} a^{12} - \frac{3}{22} a^{10} - \frac{1}{11} a^{9} + \frac{1}{22} a^{8} - \frac{2}{11} a^{7} - \frac{5}{22} a^{6} + \frac{19}{44} a^{4} - \frac{5}{11} a^{3} - \frac{3}{11} a^{2} - \frac{1}{11} a - \frac{9}{44}$, $\frac{1}{44} a^{13} - \frac{3}{22} a^{11} - \frac{1}{11} a^{10} + \frac{1}{22} a^{9} - \frac{2}{11} a^{8} - \frac{5}{22} a^{7} + \frac{19}{44} a^{5} - \frac{5}{11} a^{4} - \frac{3}{11} a^{3} - \frac{1}{11} a^{2} - \frac{9}{44} a$, $\frac{1}{44} a^{14} - \frac{1}{11} a^{11} + \frac{5}{22} a^{10} - \frac{5}{22} a^{9} + \frac{1}{22} a^{8} - \frac{1}{11} a^{7} + \frac{3}{44} a^{6} + \frac{1}{22} a^{5} + \frac{7}{22} a^{4} - \frac{7}{22} a^{3} + \frac{7}{44} a^{2} + \frac{5}{11} a - \frac{5}{22}$, $\frac{1}{44} a^{15} + \frac{5}{22} a^{11} + \frac{5}{22} a^{10} + \frac{2}{11} a^{9} + \frac{1}{11} a^{8} - \frac{7}{44} a^{7} + \frac{3}{22} a^{6} - \frac{2}{11} a^{5} + \frac{9}{22} a^{4} + \frac{15}{44} a^{3} + \frac{4}{11} a^{2} - \frac{1}{11} a + \frac{2}{11}$, $\frac{1}{258332184255918873676820999084} a^{16} - \frac{2511731054565820909416397953}{258332184255918873676820999084} a^{15} + \frac{2077573508248552029893209985}{258332184255918873676820999084} a^{14} + \frac{2525877283324885584573779359}{258332184255918873676820999084} a^{13} + \frac{2174716061844842923800432975}{258332184255918873676820999084} a^{12} + \frac{30056020431958439502035335465}{129166092127959436838410499542} a^{11} + \frac{2720323386011592350144006017}{129166092127959436838410499542} a^{10} - \frac{13391970709614298051672638483}{64583046063979718419205249771} a^{9} + \frac{30572000925656287893480468361}{258332184255918873676820999084} a^{8} - \frac{39345260928186318887212283497}{258332184255918873676820999084} a^{7} - \frac{18146572361608683819457413381}{258332184255918873676820999084} a^{6} - \frac{89501943995618815152416844151}{258332184255918873676820999084} a^{5} - \frac{4313174887553968417668181677}{11742372011632676076219136322} a^{4} - \frac{4778548921519401557558305955}{23484744023265352152438272644} a^{3} + \frac{107834100759411554923594987263}{258332184255918873676820999084} a^{2} - \frac{1199123893132204806114529197}{23484744023265352152438272644} a + \frac{85780573036326797938567383509}{258332184255918873676820999084}$, $\frac{1}{38994625800773568384235229582947967104521676} a^{17} + \frac{57519419695313}{38994625800773568384235229582947967104521676} a^{16} + \frac{319322593587002806340226742497243025852571}{38994625800773568384235229582947967104521676} a^{15} - \frac{53637239249695147265845746637474056470909}{38994625800773568384235229582947967104521676} a^{14} + \frac{36809831068600593392702983577575739172274}{9748656450193392096058807395736991776130419} a^{13} - \frac{36900884458637758097236028195399414643469}{19497312900386784192117614791473983552260838} a^{12} + \frac{3941073986391495611244820602837857699232473}{19497312900386784192117614791473983552260838} a^{11} - \frac{572590908572157331114621857482032742650459}{19497312900386784192117614791473983552260838} a^{10} + \frac{913593930012456160218316761724642070076791}{38994625800773568384235229582947967104521676} a^{9} + \frac{4023935267788377479851351932144396454174873}{38994625800773568384235229582947967104521676} a^{8} - \frac{4841075089526701034547618887010543542820841}{38994625800773568384235229582947967104521676} a^{7} + \frac{75357596156903653300120674945391134120409}{3544965981888506216748657234813451554956516} a^{6} - \frac{877769698808275513310470799340005259079549}{38994625800773568384235229582947967104521676} a^{5} - \frac{10580440210133920912109217467180768025565001}{38994625800773568384235229582947967104521676} a^{4} + \frac{14861972771514181859026073200050676232767159}{38994625800773568384235229582947967104521676} a^{3} + \frac{8895926069215996740539199753535107148553909}{38994625800773568384235229582947967104521676} a^{2} - \frac{2674228432146209705364517187340626108843557}{19497312900386784192117614791473983552260838} a - \frac{688992706257715977707400169407309481062970}{9748656450193392096058807395736991776130419}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{234}\times C_{8190}$, which has order $15331680$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8790607.764011372 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-74}) \), 3.3.1369.1, \(\Q(\zeta_{9})^+\), 3.3.110889.1, 3.3.110889.2, 6.0.35504105984.1, 6.0.170155178496.8, 6.0.232942439361024.3, 6.0.232942439361024.2, 9.9.1363532208525369.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $37$ | 37.6.5.5 | $x^{6} + 296$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 37.6.5.5 | $x^{6} + 296$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.5 | $x^{6} + 296$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |