Normalized defining polynomial
\( x^{18} - 6 x^{17} + 26 x^{16} - 82 x^{15} + 172 x^{14} - 156 x^{13} - 2102 x^{12} + 10416 x^{11} - 12604 x^{10} - 17892 x^{9} + 56416 x^{8} - 53392 x^{7} + 52964 x^{6} - 115936 x^{5} + 291840 x^{4} - 625664 x^{3} + 892928 x^{2} - 655360 x + 262144 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-126335879270977338929906174656512=-\,2^{20}\cdot 3^{9}\cdot 7^{6}\cdot 13^{6}\cdot 47^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a$, $\frac{1}{128} a^{14} + \frac{1}{64} a^{13} + \frac{5}{64} a^{12} - \frac{1}{64} a^{11} + \frac{7}{32} a^{10} + \frac{1}{32} a^{9} - \frac{11}{64} a^{8} + \frac{1}{32} a^{6} + \frac{15}{32} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} - \frac{7}{32} a^{2} - \frac{1}{2} a$, $\frac{1}{1024} a^{15} + \frac{1}{512} a^{14} - \frac{11}{512} a^{13} + \frac{63}{512} a^{12} + \frac{7}{256} a^{11} + \frac{49}{256} a^{10} + \frac{117}{512} a^{9} - \frac{1}{4} a^{8} + \frac{17}{256} a^{7} + \frac{15}{256} a^{6} + \frac{5}{16} a^{5} - \frac{25}{64} a^{4} - \frac{103}{256} a^{3} - \frac{7}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{4096} a^{16} - \frac{1}{2048} a^{15} + \frac{1}{2048} a^{14} + \frac{11}{2048} a^{13} - \frac{39}{1024} a^{12} + \frac{133}{1024} a^{11} - \frac{339}{2048} a^{10} - \frac{5}{512} a^{9} + \frac{97}{1024} a^{8} - \frac{181}{1024} a^{7} - \frac{51}{256} a^{6} + \frac{15}{256} a^{5} - \frac{215}{1024} a^{4} + \frac{107}{256} a^{3} + \frac{1}{32} a^{2} + \frac{1}{4} a$, $\frac{1}{738306219860169174926368063679339855872} a^{17} + \frac{7437511780829432389173373130142185}{369153109930084587463184031839669927936} a^{16} - \frac{19874214550461544557088878414283}{42251700804633694341671515604860928} a^{15} - \frac{198219606021818280138135515021133201}{369153109930084587463184031839669927936} a^{14} + \frac{3989018230618665920368879032740236783}{184576554965042293731592015919834963968} a^{13} - \frac{1601952164781246482613318681371560239}{184576554965042293731592015919834963968} a^{12} - \frac{11262046822070455586910352421635026731}{369153109930084587463184031839669927936} a^{11} + \frac{695616338006395325454646833531904413}{23072069370630286716449001989979370496} a^{10} + \frac{21509613904767584678236620721466141537}{184576554965042293731592015919834963968} a^{9} + \frac{15775165245072391880832326430096962271}{184576554965042293731592015919834963968} a^{8} - \frac{39077002748922695947468354444630011}{5768017342657571679112250497494842624} a^{7} - \frac{1456706180541556799276621581586050209}{46144138741260573432898003979958740992} a^{6} - \frac{33999601080187438846729679981666198695}{184576554965042293731592015919834963968} a^{5} + \frac{1655529183953427889122193365206136123}{5768017342657571679112250497494842624} a^{4} - \frac{2650218855282689516816859661956107125}{5768017342657571679112250497494842624} a^{3} + \frac{13019502470554761426268104598075441}{103000309690313779984147330312407904} a^{2} + \frac{574874396056026034960933340342239}{45062635489512278743064457011678458} a - \frac{4927409492137152859618742678913320}{22531317744756139371532228505839229}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18744750945778700369}{11991620459729210499825664} a^{17} - \frac{106588436749542652723}{5995810229864605249912832} a^{16} + \frac{422609714702518216461}{5995810229864605249912832} a^{15} - \frac{1541427928777769080473}{5995810229864605249912832} a^{14} + \frac{1703526203261942964747}{2997905114932302624956416} a^{13} - \frac{1962317128882592984391}{2997905114932302624956416} a^{12} - \frac{22779247326877412849995}{5995810229864605249912832} a^{11} + \frac{25471548205069313529443}{749476278733075656239104} a^{10} - \frac{191092711716945242970831}{2997905114932302624956416} a^{9} - \frac{194248185957496481482185}{2997905114932302624956416} a^{8} + \frac{98649979359720785055359}{374738139366537828119552} a^{7} - \frac{87844977662211568159505}{749476278733075656239104} a^{6} + \frac{32663538188068458520969}{2997905114932302624956416} a^{5} - \frac{166728344281096332531543}{374738139366537828119552} a^{4} + \frac{92581543525785987815367}{93684534841634457029888} a^{3} - \frac{25295297928254164927849}{11710566855204307128736} a^{2} + \frac{4471481544831331524043}{1463820856900538391092} a - \frac{424133809135562782125}{365955214225134597773} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1209162608.4915006 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.1316.1, 6.0.46760112.1, 6.0.73008.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $47$ | 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 47.4.2.1 | $x^{4} + 1175 x^{2} + 373321$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |