Normalized defining polynomial
\( x^{18} - 9 x^{17} + 51 x^{16} - 196 x^{15} + 804 x^{14} - 3012 x^{13} + 12898 x^{12} - 46452 x^{11} + 170676 x^{10} - 511402 x^{9} + 1574124 x^{8} - 3865668 x^{7} + 9988128 x^{6} - 19346514 x^{5} + 40437777 x^{4} - 56155537 x^{3} + 89390700 x^{2} - 70039875 x + 77095313 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1261446981901370189638661902928499=-\,3^{24}\cdot 7^{12}\cdot 19^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1197=3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1197}(1,·)$, $\chi_{1197}(835,·)$, $\chi_{1197}(457,·)$, $\chi_{1197}(778,·)$, $\chi_{1197}(400,·)$, $\chi_{1197}(151,·)$, $\chi_{1197}(856,·)$, $\chi_{1197}(1177,·)$, $\chi_{1197}(799,·)$, $\chi_{1197}(571,·)$, $\chi_{1197}(37,·)$, $\chi_{1197}(550,·)$, $\chi_{1197}(172,·)$, $\chi_{1197}(436,·)$, $\chi_{1197}(949,·)$, $\chi_{1197}(58,·)$, $\chi_{1197}(379,·)$, $\chi_{1197}(970,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{508} a^{16} - \frac{31}{127} a^{15} + \frac{39}{254} a^{14} + \frac{39}{254} a^{13} + \frac{11}{254} a^{12} + \frac{53}{254} a^{11} + \frac{1}{254} a^{10} + \frac{29}{127} a^{9} + \frac{23}{127} a^{8} + \frac{107}{254} a^{7} + \frac{12}{127} a^{6} + \frac{33}{127} a^{5} - \frac{8}{127} a^{4} - \frac{36}{127} a^{3} + \frac{45}{508} a^{2} + \frac{119}{254} a - \frac{117}{508}$, $\frac{1}{2902412340737038346235658425852935513982959040659348} a^{17} + \frac{1905131158961641055851292248284231599579716008737}{2902412340737038346235658425852935513982959040659348} a^{16} - \frac{24026502299369334101719598454472014311409849754813}{1451206170368519173117829212926467756991479520329674} a^{15} - \frac{361562843422124445174748772124738350020507567835437}{1451206170368519173117829212926467756991479520329674} a^{14} - \frac{133679979146441519996253403278162714120651677911711}{1451206170368519173117829212926467756991479520329674} a^{13} + \frac{204734817813492508546797028944704686397392492203445}{1451206170368519173117829212926467756991479520329674} a^{12} + \frac{142006197157522982535785605936066698739628682228717}{725603085184259586558914606463233878495739760164837} a^{11} - \frac{68095902288577737022509045648855665475612830211519}{725603085184259586558914606463233878495739760164837} a^{10} + \frac{175377309695775999522395548824389090070383129969458}{725603085184259586558914606463233878495739760164837} a^{9} - \frac{69719414640016487003115552572644988665461565210577}{1451206170368519173117829212926467756991479520329674} a^{8} - \frac{112205742420696007349331525695364849654087060767035}{725603085184259586558914606463233878495739760164837} a^{7} + \frac{3129131944287105130849534420293555135633744821766}{725603085184259586558914606463233878495739760164837} a^{6} - \frac{108935058609520136156433434468265076352441535005089}{725603085184259586558914606463233878495739760164837} a^{5} + \frac{4927773084852008517675156011407907951633368104869}{1451206170368519173117829212926467756991479520329674} a^{4} - \frac{244610819968631176307407382077198559750458336955225}{2902412340737038346235658425852935513982959040659348} a^{3} - \frac{273736394399963752314837487198499182313431945700507}{2902412340737038346235658425852935513982959040659348} a^{2} + \frac{545170002819941708158319379997088749170371371361517}{2902412340737038346235658425852935513982959040659348} a + \frac{145782940662230496408081078675972017199549475692635}{2902412340737038346235658425852935513982959040659348}$
Class group and class number
$C_{18}\times C_{558}$, which has order $10044$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.45001899.1, 6.0.108049559499.8, 6.0.16468459.1, 6.0.108049559499.7, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |