Normalized defining polynomial
\( x^{18} - 6 x^{17} + 75 x^{16} - 299 x^{15} + 2178 x^{14} - 5913 x^{13} + 32653 x^{12} - 52812 x^{11} + 291324 x^{10} - 201688 x^{9} + 2166219 x^{8} - 907068 x^{7} + 15298582 x^{6} - 8508129 x^{5} + 75490509 x^{4} - 37914480 x^{3} + 173222787 x^{2} - 45736635 x + 210280141 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12516723252931349928823131701451339=-\,3^{27}\cdot 7^{12}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1071=3^{2}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1071}(256,·)$, $\chi_{1071}(1,·)$, $\chi_{1071}(968,·)$, $\chi_{1071}(970,·)$, $\chi_{1071}(715,·)$, $\chi_{1071}(205,·)$, $\chi_{1071}(919,·)$, $\chi_{1071}(662,·)$, $\chi_{1071}(407,·)$, $\chi_{1071}(611,·)$, $\chi_{1071}(613,·)$, $\chi_{1071}(358,·)$, $\chi_{1071}(50,·)$, $\chi_{1071}(305,·)$, $\chi_{1071}(562,·)$, $\chi_{1071}(1019,·)$, $\chi_{1071}(764,·)$, $\chi_{1071}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{10} - \frac{1}{10} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2} + \frac{3}{10}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{1}{10} a^{4} + \frac{1}{10} a^{3} + \frac{3}{10} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{10} a^{9} + \frac{2}{5} a^{8} + \frac{1}{10} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{4} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2} + \frac{1}{10}$, $\frac{1}{2330} a^{15} - \frac{73}{2330} a^{14} - \frac{23}{2330} a^{13} - \frac{7}{2330} a^{12} + \frac{37}{466} a^{11} - \frac{29}{466} a^{10} - \frac{15}{466} a^{9} + \frac{853}{2330} a^{8} + \frac{159}{466} a^{7} - \frac{39}{466} a^{6} + \frac{741}{2330} a^{5} - \frac{175}{466} a^{4} + \frac{212}{1165} a^{3} - \frac{509}{1165} a^{2} - \frac{37}{1165} a - \frac{697}{2330}$, $\frac{1}{2330} a^{16} + \frac{7}{2330} a^{14} - \frac{11}{466} a^{13} - \frac{93}{2330} a^{12} - \frac{77}{1165} a^{11} - \frac{35}{466} a^{10} + \frac{19}{1165} a^{9} + \frac{543}{1165} a^{8} + \frac{289}{2330} a^{7} - \frac{213}{2330} a^{6} + \frac{793}{2330} a^{5} + \frac{391}{2330} a^{4} + \frac{343}{2330} a^{3} + \frac{871}{2330} a^{2} - \frac{74}{233} a + \frac{379}{2330}$, $\frac{1}{11500264136169543417448558551560688415027714812548126483930} a^{17} - \frac{2323573066600543764738241942434817572197038659371966133}{11500264136169543417448558551560688415027714812548126483930} a^{16} - \frac{1804223034955038696631802377125317900837898279088871237}{11500264136169543417448558551560688415027714812548126483930} a^{15} - \frac{108705634000622353864613094137700149811892107330010884959}{11500264136169543417448558551560688415027714812548126483930} a^{14} + \frac{561721165270468772407886547017938251208194938964799367481}{11500264136169543417448558551560688415027714812548126483930} a^{13} + \frac{54742656304936597525381222202577795610782480782361442411}{5750132068084771708724279275780344207513857406274063241965} a^{12} - \frac{223067228926445483283893284356353787594871824430812905407}{2300052827233908683489711710312137683005542962509625296786} a^{11} + \frac{528036572175501484984070379860595550698915798029178889933}{5750132068084771708724279275780344207513857406274063241965} a^{10} + \frac{275496047174968430404802131159948646992383954261195206532}{5750132068084771708724279275780344207513857406274063241965} a^{9} - \frac{5647050522489899361689786621568411996032852739137048669889}{11500264136169543417448558551560688415027714812548126483930} a^{8} - \frac{1398024796892521833336830705541351739783794895525562755419}{11500264136169543417448558551560688415027714812548126483930} a^{7} + \frac{4433045665322614199641457586913115393025450479585576612377}{11500264136169543417448558551560688415027714812548126483930} a^{6} - \frac{3189889397176627251200460241238426254481865642590317970807}{11500264136169543417448558551560688415027714812548126483930} a^{5} + \frac{1328987146653311305788361241688762867327203100371611335932}{5750132068084771708724279275780344207513857406274063241965} a^{4} + \frac{2329716815935392285202479871354711465885695775600625395891}{11500264136169543417448558551560688415027714812548126483930} a^{3} - \frac{2495902965570168180722410354145970706537769380008292570697}{5750132068084771708724279275780344207513857406274063241965} a^{2} - \frac{483477200051296946031458953573323281969993619025612509131}{1150026413616954341744855855156068841502771481254812648393} a + \frac{1554139595187343682421398588341721962328825895575213567451}{11500264136169543417448558551560688415027714812548126483930}$
Class group and class number
$C_{2}\times C_{2}\times C_{13286}$, which has order $53144$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-51}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.96702579.1, 6.0.232182892179.5, 6.0.318495051.1, 6.0.232182892179.4, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |