Normalized defining polynomial
\( x^{18} - 8 x^{17} + 44 x^{16} - 148 x^{15} + 337 x^{14} - 355 x^{13} - 409 x^{12} + 2535 x^{11} - 3290 x^{10} - 6263 x^{9} + 43736 x^{8} - 119075 x^{7} + 221321 x^{6} - 296751 x^{5} + 303777 x^{4} - 226521 x^{3} + 141287 x^{2} - 71712 x + 44507 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12488057521927227046014543503=-\,7^{15}\cdot 138041^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 138041$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{1693040551720163860810071518111673069} a^{17} + \frac{71989274121427376275098525370320458}{564346850573387953603357172703891023} a^{16} + \frac{35177094230577128681715759205104873}{564346850573387953603357172703891023} a^{15} - \frac{186793848739559706018245986660548592}{564346850573387953603357172703891023} a^{14} - \frac{187990557613581961446827734988569243}{564346850573387953603357172703891023} a^{13} + \frac{106880811858113688449720881770577024}{564346850573387953603357172703891023} a^{12} - \frac{762341836644965867834969659217561729}{1693040551720163860810071518111673069} a^{11} - \frac{143234426943394757590303953037725710}{564346850573387953603357172703891023} a^{10} - \frac{6876370287249465953940447745760957}{1693040551720163860810071518111673069} a^{9} + \frac{151769204804334520848779172021844688}{1693040551720163860810071518111673069} a^{8} + \frac{485621725383788961084624165237491294}{1693040551720163860810071518111673069} a^{7} - \frac{85065641336763211099383576078350984}{1693040551720163860810071518111673069} a^{6} + \frac{547080186010193983377716658566999678}{1693040551720163860810071518111673069} a^{5} + \frac{330231528491885611444198314048530423}{1693040551720163860810071518111673069} a^{4} + \frac{734804197879389576233609482011317905}{1693040551720163860810071518111673069} a^{3} + \frac{555848373726435231334794232775414897}{1693040551720163860810071518111673069} a^{2} + \frac{617687202566743480138624651763790386}{1693040551720163860810071518111673069} a - \frac{25035986921719525613510474314768003}{564346850573387953603357172703891023}$
Class group and class number
$C_{2}\times C_{56}$, which has order $112$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22017.7641526 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 34 conjugacy class representatives for t18n285 |
| Character table for t18n285 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.0.2320055087.1, 9.9.16240385609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 138041 | Data not computed | ||||||