Normalized defining polynomial
\( x^{18} - 3 x^{17} - 60 x^{16} + 60 x^{15} + 1944 x^{14} + 1116 x^{13} - 22314 x^{12} - 19494 x^{11} + 210087 x^{10} + 301551 x^{9} + 816822 x^{8} + 5088618 x^{7} + 20836656 x^{6} + 36778968 x^{5} + 128208960 x^{4} + 167694048 x^{3} + 625363200 x^{2} + 242697600 x + 1721055744 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1245190474036783044610867207005696000000000=-\,2^{18}\cdot 3^{31}\cdot 5^{9}\cdot 13^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $218.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{72} a^{9} + \frac{1}{24} a^{8} + \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{1}{12} a^{3} + \frac{1}{4} a^{2} - \frac{1}{3}$, $\frac{1}{288} a^{10} + \frac{1}{288} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{1}{96} a^{6} - \frac{1}{32} a^{5} + \frac{5}{48} a^{4} - \frac{13}{48} a^{3} - \frac{1}{2} a^{2} - \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{288} a^{11} + \frac{1}{288} a^{9} - \frac{1}{24} a^{8} - \frac{1}{96} a^{7} + \frac{1}{24} a^{6} + \frac{1}{96} a^{5} + \frac{17}{48} a^{3} - \frac{1}{3} a^{2} - \frac{1}{4} a - \frac{1}{3}$, $\frac{1}{576} a^{12} - \frac{1}{576} a^{10} + \frac{1}{288} a^{9} + \frac{1}{64} a^{8} + \frac{5}{64} a^{6} - \frac{7}{32} a^{5} - \frac{5}{96} a^{4} - \frac{5}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{1152} a^{13} - \frac{1}{1152} a^{12} - \frac{1}{1152} a^{11} - \frac{1}{1152} a^{10} + \frac{1}{384} a^{9} + \frac{7}{128} a^{8} + \frac{13}{128} a^{7} + \frac{35}{384} a^{6} - \frac{13}{96} a^{5} + \frac{1}{64} a^{4} - \frac{25}{96} a^{3} - \frac{5}{48} a^{2} - \frac{1}{24} a - \frac{1}{2}$, $\frac{1}{2304} a^{14} - \frac{1}{2304} a^{13} - \frac{1}{2304} a^{12} + \frac{1}{768} a^{11} - \frac{1}{2304} a^{10} + \frac{5}{768} a^{9} - \frac{1}{768} a^{8} - \frac{41}{768} a^{7} + \frac{7}{96} a^{6} + \frac{83}{384} a^{5} - \frac{23}{192} a^{4} - \frac{11}{96} a^{3} + \frac{7}{16} a^{2} - \frac{1}{3} a$, $\frac{1}{502272} a^{15} + \frac{43}{251136} a^{14} + \frac{17}{251136} a^{13} + \frac{137}{251136} a^{12} - \frac{271}{251136} a^{11} - \frac{397}{251136} a^{10} - \frac{133}{41856} a^{9} - \frac{4487}{83712} a^{8} + \frac{12503}{167424} a^{7} - \frac{1783}{41856} a^{6} + \frac{2961}{27904} a^{5} + \frac{575}{10464} a^{4} - \frac{1423}{5232} a^{3} - \frac{1981}{5232} a^{2} + \frac{611}{5232} a + \frac{115}{436}$, $\frac{1}{139631616} a^{16} - \frac{3}{3878656} a^{15} - \frac{511}{34907904} a^{14} - \frac{103}{320256} a^{13} - \frac{5801}{11635968} a^{12} + \frac{21737}{17453952} a^{11} - \frac{83465}{69815808} a^{10} - \frac{209509}{34907904} a^{9} + \frac{615515}{15514624} a^{8} + \frac{246263}{3878656} a^{7} - \frac{1570655}{23271936} a^{6} - \frac{426607}{1939328} a^{5} - \frac{148213}{1454496} a^{4} + \frac{104695}{1454496} a^{3} - \frac{492307}{1454496} a^{2} + \frac{6401}{45453} a - \frac{149}{654}$, $\frac{1}{8447214997753954044045953848014848054243328} a^{17} - \frac{9865435786758405644550225041900279}{2815738332584651348015317949338282684747776} a^{16} - \frac{678162489890450532468283507013995255}{1407869166292325674007658974669141342373888} a^{15} + \frac{2023288174481570682625642165523862661}{21997955723317588656369671479205333474592} a^{14} + \frac{41263097928963679041639701822341971031}{117322430524360472833971581222428445197824} a^{13} + \frac{17715596987329727838162474816924562073}{78214953682906981889314387481618963465216} a^{12} - \frac{2406426816687378375305076229771636021339}{1407869166292325674007658974669141342373888} a^{11} + \frac{79280648000872565345908983076924395287}{469289722097441891335886324889713780791296} a^{10} - \frac{8532337510549397848291868671498499331895}{2815738332584651348015317949338282684747776} a^{9} + \frac{30775400101972967042124609488663625046579}{2815738332584651348015317949338282684747776} a^{8} - \frac{28975273927567137630247836608937341128217}{234644861048720945667943162444856890395648} a^{7} + \frac{25541685069000323311227741343467219005561}{469289722097441891335886324889713780791296} a^{6} - \frac{12000557418584285860884628569150874069841}{234644861048720945667943162444856890395648} a^{5} + \frac{300687485511136066399059889922239052969}{4888434605181686368082149217601185216576} a^{4} + \frac{811706854072477512472996699608482587619}{14665303815545059104246447652803555649728} a^{3} - \frac{693496311421565430778381254954348988199}{9776869210363372736164298435202370433152} a^{2} + \frac{534861834887976424945166021051358753903}{4888434605181686368082149217601185216576} a - \frac{6309410269178102427000406234784520877}{26376445711411976806198646857560351888}$
Class group and class number
$C_{14}\times C_{2754192}$, which has order $38558688$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3533133948.6916637 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.2808.1, 3.3.13689.1, 6.0.70270770375.5, 6.0.2956824000.11, 9.9.460990789028310528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.12.10.2 | $x^{12} + 39 x^{6} + 676$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |