Normalized defining polynomial
\( x^{18} - 3 x^{17} - 2 x^{16} + 226 x^{14} - 314 x^{13} + 2056 x^{12} - 2712 x^{11} + 26144 x^{10} - 23076 x^{9} + 264952 x^{8} - 69734 x^{7} + 1914474 x^{6} - 24520 x^{5} + 9403275 x^{4} - 679057 x^{3} + 28645658 x^{2} - 1743720 x + 39701416 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12397041052269497924235545162109375=-\,3^{9}\cdot 5^{9}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1365=3\cdot 5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1365}(256,·)$, $\chi_{1365}(1,·)$, $\chi_{1365}(646,·)$, $\chi_{1365}(841,·)$, $\chi_{1365}(74,·)$, $\chi_{1365}(781,·)$, $\chi_{1365}(16,·)$, $\chi_{1365}(1171,·)$, $\chi_{1365}(599,·)$, $\chi_{1365}(211,·)$, $\chi_{1365}(989,·)$, $\chi_{1365}(991,·)$, $\chi_{1365}(1184,·)$, $\chi_{1365}(464,·)$, $\chi_{1365}(809,·)$, $\chi_{1365}(29,·)$, $\chi_{1365}(1199,·)$, $\chi_{1365}(659,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{284061960738} a^{15} + \frac{19714875557}{284061960738} a^{14} + \frac{2012792413}{94687320246} a^{13} - \frac{33703819}{142030980369} a^{12} + \frac{34153152878}{142030980369} a^{11} + \frac{30897692513}{142030980369} a^{10} + \frac{863803521}{15781220041} a^{9} + \frac{5108650473}{31562440082} a^{8} - \frac{88578698645}{284061960738} a^{7} + \frac{27743203349}{284061960738} a^{6} - \frac{6781816280}{15781220041} a^{5} - \frac{55071579002}{142030980369} a^{4} + \frac{16013557090}{142030980369} a^{3} + \frac{33366824830}{142030980369} a^{2} - \frac{15257377318}{142030980369} a + \frac{27067014941}{142030980369}$, $\frac{1}{47154285482508} a^{16} - \frac{29}{23577142741254} a^{15} - \frac{32447640475}{1309841263403} a^{14} - \frac{1399063721521}{23577142741254} a^{13} + \frac{199719853426}{11788571370627} a^{12} - \frac{273030208505}{11788571370627} a^{11} + \frac{5551189223}{7859047580418} a^{10} - \frac{32846658285}{2619682526806} a^{9} + \frac{4707002084915}{23577142741254} a^{8} - \frac{4867780997626}{11788571370627} a^{7} - \frac{1646574697327}{7859047580418} a^{6} + \frac{1377592257965}{11788571370627} a^{5} + \frac{11629820360}{78070009077} a^{4} - \frac{9559624998269}{23577142741254} a^{3} - \frac{202552279751}{47154285482508} a^{2} - \frac{8364041947}{142030980369} a + \frac{547594095569}{1309841263403}$, $\frac{1}{24725189722462355900423992840884} a^{17} - \frac{28808558311998197}{2747243302495817322269332537876} a^{16} - \frac{2250330822861340791}{1373621651247908661134666268938} a^{15} + \frac{79217498026437444399856436987}{1373621651247908661134666268938} a^{14} - \frac{83810269498315438345494162007}{6181297430615588975105998210221} a^{13} + \frac{34273837554968667543754007277}{1373621651247908661134666268938} a^{12} - \frac{1315703456709904288127154649367}{12362594861231177950211996420442} a^{11} - \frac{532274725395947126341127392724}{6181297430615588975105998210221} a^{10} - \frac{59460037353512830905258972517}{12362594861231177950211996420442} a^{9} + \frac{360392674799031559624601900291}{4120864953743725983403998806814} a^{8} - \frac{6714167686781599726861176437}{22767209689191856261900545894} a^{7} + \frac{2650547691604120228464919346683}{6181297430615588975105998210221} a^{6} + \frac{4451095475610612074435727939833}{12362594861231177950211996420442} a^{5} - \frac{196785136651496582621929631595}{1373621651247908661134666268938} a^{4} - \frac{135374361230499884241089707763}{297893852077859709643662564348} a^{3} + \frac{6198551788797651173855084978467}{24725189722462355900423992840884} a^{2} - \frac{466387405387457445608497331089}{6181297430615588975105998210221} a - \frac{1885889753862291534521905882562}{6181297430615588975105998210221}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{20}\times C_{140}$, which has order $22400$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 205236.825908 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), 3.3.8281.1, 3.3.8281.2, 3.3.169.1, \(\Q(\zeta_{7})^+\), 6.0.231440493375.7, 6.0.231440493375.6, 6.0.96393375.1, 6.0.8103375.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |