Normalized defining polynomial
\( x^{18} - 9 x^{17} + 384 x^{16} - 2272 x^{15} + 88605 x^{14} - 658197 x^{13} + 12846028 x^{12} - 64843719 x^{11} + 865327146 x^{10} - 5579169113 x^{9} + 77246982246 x^{8} - 512686378569 x^{7} + 3789040141804 x^{6} - 15288000079185 x^{5} + 92885783574705 x^{4} - 423518882731740 x^{3} + 2727446539429518 x^{2} - 8733433478069253 x + 23845975839012979 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1235093905746889405718571099119702734980596317089792=-\,2^{12}\cdot 3^{27}\cdot 17^{9}\cdot 37^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $689.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{333} a^{15} - \frac{19}{333} a^{14} - \frac{2}{333} a^{13} + \frac{23}{333} a^{12} + \frac{16}{111} a^{11} - \frac{20}{333} a^{10} + \frac{47}{333} a^{9} + \frac{16}{333} a^{8} + \frac{26}{111} a^{7} + \frac{6}{37} a^{6} + \frac{85}{333} a^{5} - \frac{103}{333} a^{4} + \frac{95}{333} a^{3} + \frac{44}{333} a^{2} + \frac{8}{37} a + \frac{11}{333}$, $\frac{1}{333} a^{16} - \frac{10}{111} a^{14} - \frac{5}{111} a^{13} + \frac{41}{333} a^{12} + \frac{4}{333} a^{11} + \frac{7}{111} a^{9} + \frac{160}{333} a^{8} - \frac{43}{111} a^{7} + \frac{1}{333} a^{6} - \frac{17}{37} a^{5} + \frac{136}{333} a^{4} - \frac{38}{333} a^{3} + \frac{131}{333} a^{2} + \frac{47}{333} a - \frac{13}{333}$, $\frac{1}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{17} + \frac{1294630458226592604312217332445618856327941573789689059922056529596538729853159940941662405694613173767690591029659616}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{16} - \frac{3102558082877793701187584559921730902551973144946503783921687596876867599741333529092435215606439963537142937765854288}{3940396750410779958837977390098367478153913376754756100443642743734721912446909884692226755771330432898650507785647513789} a^{15} - \frac{20599031298442464972890033047620016715366415305995685296507233352028400368493735125650340329319673976040664526849706646}{1313465583470259986279325796699455826051304458918252033481214247911573970815636628230742251923776810966216835928549171263} a^{14} - \frac{243851628451646334235437940370968807227493851341228247077931467593405762259923587404529710934332646836795865943227540283}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{13} - \frac{1945394868841784540143297627244444191620551213481379853258929543050423944377397326693492925246399558111306419669715681176}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{12} - \frac{692814160950185791203620069489687363612780616705785596756913843652456958717592599817504558351798086546259674074345853069}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{11} + \frac{56739131373111301447164012023156339174268457771965101977016148498849540427362391869009874329689691872502218444360723320}{1313465583470259986279325796699455826051304458918252033481214247911573970815636628230742251923776810966216835928549171263} a^{10} - \frac{1921156516505746437951472880534613014378886025113828017539864048527313600688301079375333854392435070371399283923800173089}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{9} + \frac{2888822628384727459616595858630320772368822745717139824561032790064794079165289772221407565947271776463659627789790247893}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{8} - \frac{1957507418057528059580486464310418883078716582071029600748014521354298527501304816628916865880598571165732177241079163004}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{7} - \frac{4866041677850568627793612097276920307499581432145931900936276132148201981335386394573994921240260008281479648762617001339}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{6} - \frac{5058230712552900889586477879192970471050281612173067936770069994063626988488413714513523406863653229765030602975296298141}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{5} - \frac{174281012461055701933983593328157347224302447695702066482274016599907860131562809454594720934353008030692752679322580462}{1313465583470259986279325796699455826051304458918252033481214247911573970815636628230742251923776810966216835928549171263} a^{4} - \frac{3370311211640140115453130609299731610724544281016552843402665886115258310527890512682907859782677395930983191053552125072}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367} a^{3} + \frac{447732286969739227544162801795746526374153677791352705247342373046200055421987604018650741414283939776712649715809453983}{3940396750410779958837977390098367478153913376754756100443642743734721912446909884692226755771330432898650507785647513789} a^{2} - \frac{1412063604058501613083308507006788458833285352716742936730293429630388866240049096012670145966130945012309349174100826219}{3940396750410779958837977390098367478153913376754756100443642743734721912446909884692226755771330432898650507785647513789} a - \frac{3236100097921755846052256834821784897101609581014673565803170853997574642082495062848366072347672599898660311186562347666}{11821190251232339876513932170295102434461740130264268301330928231204165737340729654076680267313991298695951523356942541367}$
Class group and class number
$C_{2}\times C_{78}\times C_{70196490}$, which has order $10950652440$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118546543.87559307 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-1887}) \), 3.3.148.1, 3.3.110889.1, 6.0.6705739479965103.1, 6.0.107506737648.4, 9.9.3228844269788073792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.5.5 | $x^{6} + 296$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |