Normalized defining polynomial
\( x^{18} + 77 x^{16} + 2290 x^{14} + 32780 x^{12} + 229300 x^{10} + 728030 x^{8} + 1115438 x^{6} + 807340 x^{4} + 225515 x^{2} + 6845 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12219549533244336463201225932800000=-\,2^{26}\cdot 5^{5}\cdot 37^{10}\cdot 59^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{8} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{16} a^{8} + \frac{3}{16} a^{6} + \frac{1}{16} a^{4} + \frac{5}{16} a^{2} - \frac{7}{16}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{3}{16} a^{7} + \frac{1}{16} a^{5} + \frac{5}{16} a^{3} - \frac{7}{16} a$, $\frac{1}{84431766316859504} a^{16} + \frac{2319451304898323}{84431766316859504} a^{14} - \frac{4116718207187585}{84431766316859504} a^{12} + \frac{5157721078074443}{84431766316859504} a^{10} - \frac{3513964594085013}{84431766316859504} a^{8} - \frac{90826434302587}{84431766316859504} a^{6} + \frac{18894388817993293}{84431766316859504} a^{4} - \frac{866560320586095}{2281939630185392} a^{2} + \frac{27671938209719}{142621226886587}$, $\frac{1}{168863532633719008} a^{17} - \frac{1}{168863532633719008} a^{16} - \frac{739383522476349}{42215883158429752} a^{15} + \frac{739383522476349}{42215883158429752} a^{14} + \frac{580133593808067}{84431766316859504} a^{13} - \frac{580133593808067}{84431766316859504} a^{12} + \frac{5217353236439081}{84431766316859504} a^{11} - \frac{5217353236439081}{84431766316859504} a^{10} + \frac{881510400359353}{84431766316859504} a^{9} - \frac{881510400359353}{84431766316859504} a^{8} - \frac{995111413669609}{10553970789607438} a^{7} + \frac{995111413669609}{10553970789607438} a^{6} + \frac{6808701711594787}{84431766316859504} a^{5} - \frac{6808701711594787}{84431766316859504} a^{4} - \frac{789833227509515}{2281939630185392} a^{3} + \frac{789833227509515}{2281939630185392} a^{2} + \frac{1441099599561613}{4563879260370784} a - \frac{1441099599561613}{4563879260370784}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{482}$, which has order $3856$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2027042.55291 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n772 are not computed |
| Character table for t18n772 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.10438327105600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | $18$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.1 | $x^{6} + 2 x^{5} + 2 x^{4} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.12.16.15 | $x^{12} - 71 x^{8} + 123 x^{4} - 245$ | $6$ | $2$ | $16$ | 12T50 | $[4/3, 4/3, 2, 2]_{3}^{2}$ | |
| $5$ | 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.0.1 | $x^{12} - x^{3} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.12.6.1 | $x^{12} + 2026120 x^{6} - 69343957 x^{2} + 1026290563600$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 59 | Data not computed | ||||||