Normalized defining polynomial
\( x^{18} + 123 x^{16} - 8 x^{15} + 7677 x^{14} - 264 x^{13} + 314571 x^{12} + 15918 x^{11} + 9143631 x^{10} + 1266502 x^{9} + 192211413 x^{8} + 37069122 x^{7} + 2881098747 x^{6} + 575805318 x^{5} + 29298758262 x^{4} + 4777613720 x^{3} + 181053453228 x^{2} + 16896372024 x + 512126566568 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-121525329645053177620052260620194807808=-\,2^{18}\cdot 3^{24}\cdot 7^{12}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $130.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4284=2^{2}\cdot 3^{2}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4284}(1,·)$, $\chi_{4284}(67,·)$, $\chi_{4284}(2311,·)$, $\chi_{4284}(3469,·)$, $\chi_{4284}(205,·)$, $\chi_{4284}(2515,·)$, $\chi_{4284}(1429,·)$, $\chi_{4284}(1495,·)$, $\chi_{4284}(3739,·)$, $\chi_{4284}(1633,·)$, $\chi_{4284}(613,·)$, $\chi_{4284}(3943,·)$, $\chi_{4284}(2857,·)$, $\chi_{4284}(2923,·)$, $\chi_{4284}(883,·)$, $\chi_{4284}(3061,·)$, $\chi_{4284}(2041,·)$, $\chi_{4284}(1087,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2032} a^{16} - \frac{69}{1016} a^{15} + \frac{165}{2032} a^{14} + \frac{285}{1016} a^{13} + \frac{183}{2032} a^{12} + \frac{159}{1016} a^{11} - \frac{183}{2032} a^{10} - \frac{121}{254} a^{9} - \frac{283}{2032} a^{8} - \frac{187}{508} a^{7} + \frac{955}{2032} a^{6} - \frac{177}{508} a^{5} + \frac{149}{2032} a^{4} + \frac{211}{508} a^{3} - \frac{217}{508} a^{2} + \frac{61}{254} a - \frac{139}{508}$, $\frac{1}{1032059654733219313211429795374860741941256856126863115925986896212528} a^{17} - \frac{26091454527676744785730138892359665688624261403343759589176020161}{129007456841652414151428724421857592742657107015857889490748362026566} a^{16} - \frac{62025463123225562550826001022075060247938812041911158123686528437723}{1032059654733219313211429795374860741941256856126863115925986896212528} a^{15} - \frac{13178720765486898667719576568055923610695801861863178505436878213513}{258014913683304828302857448843715185485314214031715778981496724053132} a^{14} - \frac{381030247134647089111404040358681939220794490856645634104454707998105}{1032059654733219313211429795374860741941256856126863115925986896212528} a^{13} + \frac{112643673358775515235583709177132358281500163976564697264372947160273}{258014913683304828302857448843715185485314214031715778981496724053132} a^{12} - \frac{290492408478433984786285275366535504586946096404007196385519961659671}{1032059654733219313211429795374860741941256856126863115925986896212528} a^{11} + \frac{166895297742063388742822397583401244615837178439309188953188312862241}{516029827366609656605714897687430370970628428063431557962993448106264} a^{10} + \frac{399880850496766125480995712039009193561983284362055319474796600322513}{1032059654733219313211429795374860741941256856126863115925986896212528} a^{9} + \frac{68170510106389879608744539697380399522078386123303565465442334078167}{516029827366609656605714897687430370970628428063431557962993448106264} a^{8} + \frac{419896065887096660655182950725897937725259954554445433264019856711583}{1032059654733219313211429795374860741941256856126863115925986896212528} a^{7} + \frac{59775510522215790699366070645535391803562069482943860065219949735257}{516029827366609656605714897687430370970628428063431557962993448106264} a^{6} - \frac{154380154370286361396772058094635349888264971158116834185161951507743}{1032059654733219313211429795374860741941256856126863115925986896212528} a^{5} - \frac{211651629022488972757875672117342908529937962305925514520814910605893}{516029827366609656605714897687430370970628428063431557962993448106264} a^{4} - \frac{10682644495497029963979377208283135121500763295024663179852066806247}{64503728420826207075714362210928796371328553507928944745374181013283} a^{3} + \frac{25736667668895998597616740298886845329374378240708506800265323443620}{64503728420826207075714362210928796371328553507928944745374181013283} a^{2} + \frac{75185356651457161045577186167742175702904408519996574719129167214955}{258014913683304828302857448843715185485314214031715778981496724053132} a - \frac{11542819733573866139230363399214947848560602087407491734504144552523}{129007456841652414151428724421857592742657107015857889490748362026566}$
Class group and class number
$C_{2}\times C_{18}\times C_{18}\times C_{18}\times C_{468}$, which has order $5458752$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-17}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, 3.3.3969.2, \(\Q(\zeta_{7})^+\), 6.0.2062988352.6, 6.0.4953235033152.4, 6.0.4953235033152.5, 6.0.754951232.2, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |