Normalized defining polynomial
\( x^{18} - x^{17} + 2 x^{16} - 11 x^{15} + 13 x^{14} - 21 x^{13} + 45 x^{12} - 52 x^{11} + 71 x^{10} - 81 x^{9} + 80 x^{8} - 74 x^{7} + 30 x^{6} - 39 x^{5} + 52 x^{4} + 24 x^{3} + 35 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-120991234111258079232=-\,2^{12}\cdot 3^{9}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{327} a^{16} - \frac{10}{327} a^{15} + \frac{11}{327} a^{14} + \frac{46}{327} a^{13} + \frac{16}{327} a^{12} + \frac{11}{109} a^{11} - \frac{22}{327} a^{10} - \frac{20}{327} a^{9} - \frac{49}{109} a^{8} + \frac{137}{327} a^{7} - \frac{146}{327} a^{6} + \frac{62}{327} a^{5} - \frac{49}{109} a^{4} + \frac{77}{327} a^{3} + \frac{148}{327} a^{2} - \frac{133}{327} a - \frac{74}{327}$, $\frac{1}{12463421553} a^{17} - \frac{2771000}{4154473851} a^{16} - \frac{548325946}{12463421553} a^{15} - \frac{19859552}{4154473851} a^{14} - \frac{884179460}{12463421553} a^{13} + \frac{700003765}{12463421553} a^{12} + \frac{142204780}{12463421553} a^{11} - \frac{144992926}{4154473851} a^{10} - \frac{7614176}{1133038323} a^{9} + \frac{1323240365}{12463421553} a^{8} - \frac{16478851}{1133038323} a^{7} - \frac{794712982}{12463421553} a^{6} + \frac{3182618507}{12463421553} a^{5} - \frac{5739636946}{12463421553} a^{4} + \frac{1454042603}{4154473851} a^{3} + \frac{304841761}{4154473851} a^{2} + \frac{120135484}{1133038323} a - \frac{2469844921}{12463421553}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{16601158}{114343317} a^{17} + \frac{5925779}{38114439} a^{16} - \frac{35963768}{114343317} a^{15} + \frac{62404778}{38114439} a^{14} - \frac{230484784}{114343317} a^{13} + \frac{380288075}{114343317} a^{12} - \frac{796971016}{114343317} a^{11} + \frac{312233704}{38114439} a^{10} - \frac{118191250}{10394847} a^{9} + \frac{1513376653}{114343317} a^{8} - \frac{137007134}{10394847} a^{7} + \frac{1427507152}{114343317} a^{6} - \frac{694373156}{114343317} a^{5} + \frac{800386717}{114343317} a^{4} - \frac{323453332}{38114439} a^{3} - \frac{29018010}{12704813} a^{2} - \frac{62102422}{10394847} a - \frac{2986853}{114343317} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2135.41668653 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3.S_3^2$ (as 18T57):
| A solvable group of order 108 |
| The 11 conjugacy class representatives for $C_3.S_3^2$ |
| Character table for $C_3.S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.321.1, 6.0.309123.1, 9.3.6350622912.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $107$ | 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |