Properties

Label 18.0.12099123411...9232.2
Degree $18$
Signature $[0, 9]$
Discriminant $-\,2^{12}\cdot 3^{9}\cdot 107^{6}$
Root discriminant $13.05$
Ramified primes $2, 3, 107$
Class number $1$
Class group Trivial
Galois group $C_3.S_3^2$ (as 18T57)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 6, 35, 24, 52, -39, 30, -74, 80, -81, 71, -52, 45, -21, 13, -11, 2, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - x^17 + 2*x^16 - 11*x^15 + 13*x^14 - 21*x^13 + 45*x^12 - 52*x^11 + 71*x^10 - 81*x^9 + 80*x^8 - 74*x^7 + 30*x^6 - 39*x^5 + 52*x^4 + 24*x^3 + 35*x^2 + 6*x + 1)
 
gp: K = bnfinit(x^18 - x^17 + 2*x^16 - 11*x^15 + 13*x^14 - 21*x^13 + 45*x^12 - 52*x^11 + 71*x^10 - 81*x^9 + 80*x^8 - 74*x^7 + 30*x^6 - 39*x^5 + 52*x^4 + 24*x^3 + 35*x^2 + 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - x^{17} + 2 x^{16} - 11 x^{15} + 13 x^{14} - 21 x^{13} + 45 x^{12} - 52 x^{11} + 71 x^{10} - 81 x^{9} + 80 x^{8} - 74 x^{7} + 30 x^{6} - 39 x^{5} + 52 x^{4} + 24 x^{3} + 35 x^{2} + 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 9]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-120991234111258079232=-\,2^{12}\cdot 3^{9}\cdot 107^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $13.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 107$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{327} a^{16} - \frac{10}{327} a^{15} + \frac{11}{327} a^{14} + \frac{46}{327} a^{13} + \frac{16}{327} a^{12} + \frac{11}{109} a^{11} - \frac{22}{327} a^{10} - \frac{20}{327} a^{9} - \frac{49}{109} a^{8} + \frac{137}{327} a^{7} - \frac{146}{327} a^{6} + \frac{62}{327} a^{5} - \frac{49}{109} a^{4} + \frac{77}{327} a^{3} + \frac{148}{327} a^{2} - \frac{133}{327} a - \frac{74}{327}$, $\frac{1}{12463421553} a^{17} - \frac{2771000}{4154473851} a^{16} - \frac{548325946}{12463421553} a^{15} - \frac{19859552}{4154473851} a^{14} - \frac{884179460}{12463421553} a^{13} + \frac{700003765}{12463421553} a^{12} + \frac{142204780}{12463421553} a^{11} - \frac{144992926}{4154473851} a^{10} - \frac{7614176}{1133038323} a^{9} + \frac{1323240365}{12463421553} a^{8} - \frac{16478851}{1133038323} a^{7} - \frac{794712982}{12463421553} a^{6} + \frac{3182618507}{12463421553} a^{5} - \frac{5739636946}{12463421553} a^{4} + \frac{1454042603}{4154473851} a^{3} + \frac{304841761}{4154473851} a^{2} + \frac{120135484}{1133038323} a - \frac{2469844921}{12463421553}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $8$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{16601158}{114343317} a^{17} + \frac{5925779}{38114439} a^{16} - \frac{35963768}{114343317} a^{15} + \frac{62404778}{38114439} a^{14} - \frac{230484784}{114343317} a^{13} + \frac{380288075}{114343317} a^{12} - \frac{796971016}{114343317} a^{11} + \frac{312233704}{38114439} a^{10} - \frac{118191250}{10394847} a^{9} + \frac{1513376653}{114343317} a^{8} - \frac{137007134}{10394847} a^{7} + \frac{1427507152}{114343317} a^{6} - \frac{694373156}{114343317} a^{5} + \frac{800386717}{114343317} a^{4} - \frac{323453332}{38114439} a^{3} - \frac{29018010}{12704813} a^{2} - \frac{62102422}{10394847} a - \frac{2986853}{114343317} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2135.41668653 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3.S_3^2$ (as 18T57):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 108
The 11 conjugacy class representatives for $C_3.S_3^2$
Character table for $C_3.S_3^2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 3.3.321.1, 6.0.309123.1, 9.3.6350622912.1 x3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 9 siblings: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$107$107.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
107.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
107.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
107.4.2.1$x^{4} + 963 x^{2} + 286225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
107.4.2.1$x^{4} + 963 x^{2} + 286225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
107.4.2.1$x^{4} + 963 x^{2} + 286225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$