Normalized defining polynomial
\( x^{18} + 4 x^{14} - 40 x^{12} + 20 x^{10} + 287 x^{8} - 1036 x^{6} + 1882 x^{4} - 1404 x^{2} + 367 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-120779875685608537745647=-\,367^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $367$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{4} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{5} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{6} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{2} a^{7} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{8} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3}$, $\frac{1}{90} a^{14} - \frac{2}{45} a^{12} + \frac{2}{45} a^{10} + \frac{4}{45} a^{8} - \frac{8}{45} a^{6} - \frac{1}{2} a^{5} - \frac{17}{90} a^{4} + \frac{4}{45} a^{2} + \frac{7}{90}$, $\frac{1}{90} a^{15} - \frac{2}{45} a^{13} + \frac{2}{45} a^{11} - \frac{7}{90} a^{9} - \frac{8}{45} a^{7} - \frac{1}{2} a^{6} - \frac{17}{90} a^{5} - \frac{1}{2} a^{4} + \frac{4}{45} a^{3} - \frac{23}{90} a - \frac{1}{2}$, $\frac{1}{2895539130} a^{16} + \frac{60415}{289553913} a^{14} + \frac{62774153}{2895539130} a^{12} + \frac{101671909}{2895539130} a^{10} - \frac{50695604}{482589855} a^{8} + \frac{92667409}{263230830} a^{6} - \frac{1}{2} a^{5} - \frac{102895670}{289553913} a^{4} - \frac{1}{2} a^{3} - \frac{1184037331}{2895539130} a^{2} - \frac{1}{2} a - \frac{369930146}{1447769565}$, $\frac{1}{2895539130} a^{17} + \frac{60415}{289553913} a^{15} + \frac{62774153}{2895539130} a^{13} + \frac{101671909}{2895539130} a^{11} + \frac{59472077}{965179710} a^{9} + \frac{92667409}{263230830} a^{7} - \frac{1}{2} a^{6} - \frac{102895670}{289553913} a^{5} - \frac{1184037331}{2895539130} a^{3} - \frac{1}{2} a^{2} + \frac{112659709}{1447769565} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21882.4539804 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-367}) \), 3.1.367.1 x3, 6.0.49430863.1, 9.1.18141126721.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 367 | Data not computed | ||||||