Normalized defining polynomial
\( x^{18} + 222 x^{16} + 18648 x^{14} + 759240 x^{12} + 15920064 x^{10} + 172627200 x^{8} + 964986048 x^{6} + 2599765632 x^{4} + 2672269056 x^{2} + 372874752 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1205953284095546800596778947408883089408=-\,2^{27}\cdot 3^{9}\cdot 37^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $148.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(888=2^{3}\cdot 3\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{888}(1,·)$, $\chi_{888}(49,·)$, $\chi_{888}(77,·)$, $\chi_{888}(145,·)$, $\chi_{888}(793,·)$, $\chi_{888}(601,·)$, $\chi_{888}(101,·)$, $\chi_{888}(221,·)$, $\chi_{888}(485,·)$, $\chi_{888}(673,·)$, $\chi_{888}(677,·)$, $\chi_{888}(625,·)$, $\chi_{888}(173,·)$, $\chi_{888}(317,·)$, $\chi_{888}(433,·)$, $\chi_{888}(437,·)$, $\chi_{888}(121,·)$, $\chi_{888}(509,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{36} a^{4}$, $\frac{1}{36} a^{5}$, $\frac{1}{216} a^{6}$, $\frac{1}{216} a^{7}$, $\frac{1}{1296} a^{8}$, $\frac{1}{1296} a^{9}$, $\frac{1}{7776} a^{10}$, $\frac{1}{7776} a^{11}$, $\frac{1}{46656} a^{12}$, $\frac{1}{46656} a^{13}$, $\frac{1}{12037248} a^{14} + \frac{7}{167184} a^{10} - \frac{13}{55728} a^{8} - \frac{5}{4644} a^{6} + \frac{11}{1548} a^{4} - \frac{11}{258} a^{2} - \frac{21}{43}$, $\frac{1}{12037248} a^{15} + \frac{7}{167184} a^{11} - \frac{13}{55728} a^{9} - \frac{5}{4644} a^{7} + \frac{11}{1548} a^{5} - \frac{11}{258} a^{3} - \frac{21}{43} a$, $\frac{1}{4651388858416896} a^{16} + \frac{31484785}{775231476402816} a^{14} - \frac{1186318945}{129205246067136} a^{12} + \frac{1577935}{1196344870992} a^{10} + \frac{454901551}{3589034612976} a^{8} + \frac{184057103}{199390811832} a^{6} - \frac{348647267}{33231801972} a^{4} - \frac{426340094}{8307950493} a^{2} - \frac{7266499}{2769316831}$, $\frac{1}{4651388858416896} a^{17} + \frac{31484785}{775231476402816} a^{15} - \frac{1186318945}{129205246067136} a^{13} + \frac{1577935}{1196344870992} a^{11} + \frac{454901551}{3589034612976} a^{9} + \frac{184057103}{199390811832} a^{7} - \frac{348647267}{33231801972} a^{5} - \frac{426340094}{8307950493} a^{3} - \frac{7266499}{2769316831} a$
Class group and class number
$C_{2}\times C_{1402002}$, which has order $2804004$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.3102125697 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-222}) \), 3.3.1369.1, 6.0.958610861568.3, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | $18$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 37 | Data not computed | ||||||