Normalized defining polynomial
\( x^{18} - 2 x^{17} + 4 x^{16} + 2 x^{15} - 2 x^{14} + 6 x^{13} + 15 x^{12} - 4 x^{11} + 17 x^{10} + 10 x^{9} + 32 x^{8} + 9 x^{7} + 15 x^{6} + 34 x^{5} + 13 x^{4} + 8 x^{3} + 7 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-120334583646716719921875=-\,3^{17}\cdot 5^{8}\cdot 13^{4}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{12} - \frac{1}{15} a^{11} - \frac{1}{5} a^{10} + \frac{1}{15} a^{8} - \frac{1}{15} a^{7} - \frac{2}{5} a^{6} - \frac{7}{15} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{15} a^{2} + \frac{1}{15} a - \frac{2}{15}$, $\frac{1}{15} a^{14} - \frac{2}{15} a^{12} - \frac{4}{15} a^{11} - \frac{1}{5} a^{10} + \frac{1}{15} a^{9} - \frac{7}{15} a^{7} + \frac{2}{15} a^{6} - \frac{4}{15} a^{5} - \frac{2}{5} a^{4} + \frac{4}{15} a^{3} - \frac{1}{15} a^{2} - \frac{1}{15} a - \frac{2}{15}$, $\frac{1}{15} a^{15} - \frac{1}{15} a^{12} - \frac{1}{3} a^{9} - \frac{2}{5} a^{6} + \frac{2}{5} a^{3} + \frac{1}{15}$, $\frac{1}{45} a^{16} + \frac{1}{45} a^{15} + \frac{1}{45} a^{13} + \frac{7}{45} a^{12} - \frac{7}{45} a^{11} + \frac{14}{45} a^{10} + \frac{1}{3} a^{9} - \frac{1}{15} a^{8} - \frac{8}{45} a^{7} + \frac{17}{45} a^{6} + \frac{11}{45} a^{5} + \frac{7}{45} a^{4} - \frac{22}{45} a^{3} + \frac{7}{15} a^{2} + \frac{2}{5} a + \frac{22}{45}$, $\frac{1}{585} a^{17} - \frac{1}{585} a^{16} + \frac{16}{585} a^{15} - \frac{8}{585} a^{14} - \frac{2}{117} a^{13} + \frac{1}{65} a^{12} - \frac{41}{585} a^{11} + \frac{254}{585} a^{10} + \frac{86}{195} a^{9} + \frac{268}{585} a^{8} + \frac{22}{195} a^{7} - \frac{29}{585} a^{6} + \frac{17}{195} a^{5} + \frac{11}{195} a^{4} - \frac{58}{585} a^{3} + \frac{14}{39} a^{2} - \frac{58}{117} a - \frac{53}{585}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{313}{195} a^{17} - \frac{794}{195} a^{16} + \frac{1706}{195} a^{15} - \frac{346}{195} a^{14} - \frac{322}{195} a^{13} + \frac{692}{65} a^{12} + \frac{1191}{65} a^{11} - \frac{1016}{65} a^{10} + \frac{2439}{65} a^{9} - \frac{889}{195} a^{8} + \frac{3662}{65} a^{7} - \frac{3071}{195} a^{6} + \frac{7292}{195} a^{5} + \frac{6806}{195} a^{4} + \frac{943}{195} a^{3} + \frac{811}{65} a^{2} + \frac{1153}{195} a + \frac{649}{195} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19326.0168878 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 362880 |
| The 36 conjugacy class representatives for t18n888 |
| Character table for t18n888 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 9.5.22253180625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | R | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | $18$ | R | R | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.14.4 | $x^{12} + 6 x^{11} - 6 x^{10} + 6 x^{9} - 3 x^{8} + 9 x^{7} - 6 x^{6} + 9 x^{5} + 9 x^{4} + 9 x^{3} + 9 x^{2} + 9$ | $6$ | $2$ | $14$ | 12T40 | $[3/2, 3/2]_{2}^{4}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 5.6.4.2 | $x^{6} - 5 x^{3} + 50$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $17$ | 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.4.1 | $x^{6} + 136 x^{3} + 7803$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |