Normalized defining polynomial
\( x^{18} - 2 x^{17} + 164 x^{16} - 314 x^{15} + 13029 x^{14} - 21092 x^{13} + 651907 x^{12} - 798220 x^{11} + 22417227 x^{10} - 18246558 x^{9} + 545228110 x^{8} - 241380330 x^{7} + 9318786102 x^{6} - 1404347650 x^{5} + 107199772771 x^{4} + 3474292326 x^{3} + 747079319085 x^{2} + 64419294176 x + 2378782567897 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-120092997667342126925823206694597892767744=-\,2^{24}\cdot 3^{9}\cdot 7^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $191.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{821083593224951651505642937337753673923088107831174305786061384433674} a^{17} + \frac{11071169826771956007024158729961293647151477753372224638509796543150}{410541796612475825752821468668876836961544053915587152893030692216837} a^{16} - \frac{70398465982325409586877502989683803406918820514430222170320790059859}{410541796612475825752821468668876836961544053915587152893030692216837} a^{15} - \frac{94736969064031614562057320068340639403235115784862741735899690107590}{410541796612475825752821468668876836961544053915587152893030692216837} a^{14} - \frac{80441158842025688482753361791839066819082629185722725368085464774819}{821083593224951651505642937337753673923088107831174305786061384433674} a^{13} - \frac{68278732006596904449502288387950961063797541771538066973330868070113}{821083593224951651505642937337753673923088107831174305786061384433674} a^{12} - \frac{36971735439596275693034477786790465364537958617837782755458077249921}{410541796612475825752821468668876836961544053915587152893030692216837} a^{11} + \frac{373185000795942873382254131591981400508010779087261925842074561192}{1526177682574259575289299140032999393909085702288428077669259078873} a^{10} + \frac{8833752882228987894179974953433305815651335192448959785823190417629}{821083593224951651505642937337753673923088107831174305786061384433674} a^{9} + \frac{63456713843573941607638936654997049790935407058322557758413070138693}{410541796612475825752821468668876836961544053915587152893030692216837} a^{8} + \frac{168635428730316458650122207437474056467269947809589182938585559184321}{410541796612475825752821468668876836961544053915587152893030692216837} a^{7} - \frac{165033055035742437051040559053239567140051758483231155083817644428041}{410541796612475825752821468668876836961544053915587152893030692216837} a^{6} - \frac{95738302619734175650477427200747205994297219237248033557965239679476}{410541796612475825752821468668876836961544053915587152893030692216837} a^{5} + \frac{363290101129159846203821477404290265010006903997177712232778108656777}{821083593224951651505642937337753673923088107831174305786061384433674} a^{4} - \frac{2450901046962828415250647448847343776586420224687327971606340550957}{9547483642150600598902824852764577603756838463153189602163504470159} a^{3} - \frac{77405917423739182349591717337671919966457576173870741434377797673328}{410541796612475825752821468668876836961544053915587152893030692216837} a^{2} + \frac{108055463496181693869916903650320758561285104401585729092971291133747}{821083593224951651505642937337753673923088107831174305786061384433674} a - \frac{51353947031198656120960188367296742135893409185623749486725182144023}{821083593224951651505642937337753673923088107831174305786061384433674}$
Class group and class number
$C_{2}\times C_{2}\times C_{18}\times C_{18}\times C_{36}\times C_{468}$, which has order $21835008$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.148.1, 3.3.1369.1, 6.0.3245647104.8, 6.0.1110822721344.1, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.3.2.1 | $x^{3} - 37$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.1 | $x^{6} - 37$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |