Normalized defining polynomial
\( x^{18} - 2 x^{17} + 4 x^{16} - 6 x^{15} + 68 x^{14} - 48 x^{13} + 107 x^{12} + 18 x^{11} + 280 x^{10} + 1476 x^{9} + 2630 x^{8} - 2446 x^{7} - 3383 x^{6} + 5638 x^{5} - 6368 x^{4} + 9199 x^{3} + 11816 x^{2} - 12418 x + 28133 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-119907013147065124216135739=-\,7^{12}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{2}{7} a^{6} - \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3}$, $\frac{1}{7} a^{12} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a^{4} + \frac{2}{7} a^{3}$, $\frac{1}{7} a^{13} + \frac{3}{7} a^{10} + \frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} - \frac{1}{7} a^{3}$, $\frac{1}{49} a^{14} - \frac{1}{49} a^{13} + \frac{1}{49} a^{11} + \frac{2}{7} a^{10} - \frac{8}{49} a^{8} - \frac{20}{49} a^{7} - \frac{10}{49} a^{6} + \frac{10}{49} a^{5} + \frac{16}{49} a^{4} - \frac{24}{49} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{5145} a^{15} - \frac{1}{1715} a^{14} - \frac{74}{1715} a^{13} + \frac{38}{1029} a^{12} - \frac{13}{1029} a^{11} + \frac{229}{735} a^{10} - \frac{1541}{5145} a^{9} - \frac{193}{5145} a^{8} + \frac{548}{5145} a^{7} + \frac{66}{1715} a^{6} + \frac{1319}{5145} a^{5} - \frac{43}{735} a^{4} - \frac{54}{1715} a^{3} + \frac{226}{735} a^{2} + \frac{173}{735} a + \frac{118}{735}$, $\frac{1}{117516945} a^{16} - \frac{841}{23503389} a^{15} + \frac{7611}{3013255} a^{14} + \frac{6802009}{117516945} a^{13} + \frac{586483}{23503389} a^{12} + \frac{485678}{117516945} a^{11} + \frac{36155783}{117516945} a^{10} - \frac{19556232}{39172315} a^{9} + \frac{19685599}{117516945} a^{8} - \frac{5195458}{117516945} a^{7} + \frac{31108013}{117516945} a^{6} + \frac{44579116}{117516945} a^{5} - \frac{1430516}{23503389} a^{4} - \frac{390833}{9039765} a^{3} - \frac{2163793}{5596045} a^{2} - \frac{882706}{5596045} a - \frac{6490496}{16788135}$, $\frac{1}{3977398194609857872621006695} a^{17} - \frac{61912817521211106}{37879982805808170215438159} a^{16} - \frac{336308751737290836283027}{3977398194609857872621006695} a^{15} - \frac{435771600040725877167818}{3977398194609857872621006695} a^{14} + \frac{256596836239821401186472577}{3977398194609857872621006695} a^{13} + \frac{88455157873413707570247946}{1325799398203285957540335565} a^{12} - \frac{30723736390136503975281534}{1325799398203285957540335565} a^{11} - \frac{96457010627494103229024467}{568199742087122553231572385} a^{10} - \frac{12885390646910757244033567}{113639948417424510646314477} a^{9} + \frac{247584217019097120690131468}{795479638921971574524201339} a^{8} + \frac{6864893113422134056452630}{265159879640657191508067113} a^{7} + \frac{1254811944016596998959922978}{3977398194609857872621006695} a^{6} + \frac{52576629248686849187622667}{305953707277681374817000515} a^{5} + \frac{1410807590601759908031462377}{3977398194609857872621006695} a^{4} - \frac{8787309152908991384252416}{3977398194609857872621006695} a^{3} - \frac{74986939408609429672327873}{189399914029040851077190795} a^{2} - \frac{158742961646454070792698404}{568199742087122553231572385} a - \frac{228309377134080425824723513}{568199742087122553231572385}$
Class group and class number
$C_{9}$, which has order $9$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73451.9598139 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 3.1.2891.2 x3, \(\Q(\zeta_{7})^+\), 6.0.493114979.1, 6.0.493114979.4, 6.0.10063571.1 x2, 9.3.24162633971.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.10063571.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $59$ | 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |