Normalized defining polynomial
\( x^{18} - 2 x^{17} + 19 x^{16} - 39 x^{15} + 158 x^{14} - 329 x^{13} + 828 x^{12} - 1532 x^{11} + 3227 x^{10} - 4561 x^{9} + 9424 x^{8} - 7645 x^{7} + 16855 x^{6} - 1335 x^{5} + 12837 x^{4} + 16859 x^{3} + 4272 x^{2} + 3645 x + 19629 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-119907013147065124216135739=-\,7^{12}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{41} a^{14} + \frac{1}{41} a^{13} - \frac{13}{41} a^{12} - \frac{17}{41} a^{11} - \frac{9}{41} a^{10} + \frac{5}{41} a^{9} - \frac{3}{41} a^{8} - \frac{15}{41} a^{7} + \frac{12}{41} a^{6} + \frac{3}{41} a^{5} - \frac{20}{41} a^{4} - \frac{15}{41} a^{3} - \frac{5}{41} a^{2} + \frac{10}{41} a + \frac{14}{41}$, $\frac{1}{41} a^{15} - \frac{14}{41} a^{13} - \frac{4}{41} a^{12} + \frac{8}{41} a^{11} + \frac{14}{41} a^{10} - \frac{8}{41} a^{9} - \frac{12}{41} a^{8} - \frac{14}{41} a^{7} - \frac{9}{41} a^{6} + \frac{18}{41} a^{5} + \frac{5}{41} a^{4} + \frac{10}{41} a^{3} + \frac{15}{41} a^{2} + \frac{4}{41} a - \frac{14}{41}$, $\frac{1}{8408336457} a^{16} + \frac{98818639}{8408336457} a^{15} - \frac{67650587}{8408336457} a^{14} + \frac{961516885}{2802778819} a^{13} - \frac{622801396}{8408336457} a^{12} - \frac{64781411}{8408336457} a^{11} - \frac{618398784}{2802778819} a^{10} + \frac{3431181439}{8408336457} a^{9} - \frac{3447711685}{8408336457} a^{8} + \frac{3242626922}{8408336457} a^{7} - \frac{1217687603}{8408336457} a^{6} + \frac{8351492}{8408336457} a^{5} - \frac{579581318}{8408336457} a^{4} + \frac{843624652}{2802778819} a^{3} + \frac{1319012238}{2802778819} a^{2} - \frac{999782551}{8408336457} a - \frac{1277212355}{2802778819}$, $\frac{1}{123592432791880318434616089} a^{17} - \frac{3502832895870416}{123592432791880318434616089} a^{16} + \frac{5902835453302926672142}{1274148791668869262212537} a^{15} - \frac{72784900529358955607082}{13732492532431146492735121} a^{14} + \frac{915076302767128007597089}{3014449580289763864258929} a^{13} - \frac{48780632762166263214880304}{123592432791880318434616089} a^{12} + \frac{1853558767794566839745341}{41197477597293439478205363} a^{11} - \frac{36010615422451199957045849}{123592432791880318434616089} a^{10} + \frac{32776126206012418402488176}{123592432791880318434616089} a^{9} + \frac{41428522126003421086677791}{123592432791880318434616089} a^{8} + \frac{7984772058560866665739036}{123592432791880318434616089} a^{7} - \frac{22120811069404304395080883}{123592432791880318434616089} a^{6} - \frac{31662164058645198367934591}{123592432791880318434616089} a^{5} + \frac{3369221319031760329224386}{13732492532431146492735121} a^{4} + \frac{19816277875561463703716833}{41197477597293439478205363} a^{3} + \frac{54116305906808367499828412}{123592432791880318434616089} a^{2} + \frac{13809842082307502591519536}{41197477597293439478205363} a - \frac{5448074775270510144099077}{13732492532431146492735121}$
Class group and class number
$C_{9}$, which has order $9$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42459.5790611 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 3.1.2891.1 x3, \(\Q(\zeta_{7})^+\), 6.0.493114979.3, 6.0.10063571.3 x2, 6.0.493114979.4, 9.3.24162633971.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.10063571.3 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $59$ | 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |