Normalized defining polynomial
\( x^{18} - 4 x^{17} + 9 x^{16} + 13 x^{15} - 41 x^{14} - 30 x^{13} + 569 x^{12} - 1472 x^{11} + 2121 x^{10} - 2321 x^{9} + 7035 x^{8} - 27325 x^{7} + 69340 x^{6} - 117510 x^{5} + 136638 x^{4} - 111112 x^{3} + 64007 x^{2} - 25103 x + 5249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-119907013147065124216135739=-\,7^{12}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{58} a^{13} + \frac{9}{58} a^{12} - \frac{6}{29} a^{11} + \frac{11}{58} a^{10} + \frac{21}{58} a^{9} + \frac{25}{58} a^{8} + \frac{17}{58} a^{7} - \frac{6}{29} a^{6} + \frac{11}{58} a^{5} - \frac{13}{29} a^{4} - \frac{9}{58} a^{3} + \frac{27}{58} a^{2} - \frac{12}{29} a - \frac{1}{2}$, $\frac{1}{116} a^{14} + \frac{23}{116} a^{12} - \frac{55}{116} a^{11} - \frac{5}{29} a^{10} - \frac{12}{29} a^{9} - \frac{17}{58} a^{8} - \frac{49}{116} a^{7} - \frac{55}{116} a^{6} + \frac{49}{116} a^{5} + \frac{51}{116} a^{4} + \frac{25}{58} a^{3} - \frac{35}{116} a^{2} + \frac{13}{116} a + \frac{1}{4}$, $\frac{1}{3480} a^{15} + \frac{1}{1160} a^{14} + \frac{23}{3480} a^{13} - \frac{103}{348} a^{12} - \frac{881}{3480} a^{11} + \frac{107}{290} a^{10} + \frac{607}{1740} a^{9} - \frac{499}{3480} a^{8} - \frac{227}{580} a^{7} - \frac{3}{10} a^{6} + \frac{389}{1740} a^{5} + \frac{1}{8} a^{4} + \frac{77}{1160} a^{3} + \frac{61}{435} a^{2} + \frac{139}{435} a - \frac{53}{120}$, $\frac{1}{90480} a^{16} - \frac{1}{7540} a^{15} - \frac{161}{45240} a^{14} - \frac{59}{18096} a^{13} + \frac{3469}{90480} a^{12} + \frac{2533}{30160} a^{11} - \frac{5303}{45240} a^{10} - \frac{9469}{90480} a^{9} + \frac{14441}{30160} a^{8} - \frac{4599}{15080} a^{7} + \frac{13469}{45240} a^{6} + \frac{3007}{6032} a^{5} - \frac{1319}{15080} a^{4} + \frac{21023}{90480} a^{3} + \frac{6623}{22620} a^{2} + \frac{35483}{90480} a - \frac{55}{208}$, $\frac{1}{16174745026409120296011360} a^{17} + \frac{1094147244644296411}{16174745026409120296011360} a^{16} + \frac{311075461528819497239}{2695790837734853382668560} a^{15} + \frac{9891266464139730655103}{3234949005281824059202272} a^{14} - \frac{151991613668187001201}{27887491424843310855192} a^{13} - \frac{379522872797068752410689}{2695790837734853382668560} a^{12} + \frac{177202138521151562195981}{414737051959208212718240} a^{11} - \frac{5976143946827084146327}{42903832961297401315680} a^{10} + \frac{187826586220966723538207}{505460782075285009250355} a^{9} + \frac{2437843030634320389504947}{16174745026409120296011360} a^{8} - \frac{854302536428737545753407}{4043686256602280074002840} a^{7} + \frac{14944477633690246471987}{1244211155877624638154720} a^{6} - \frac{3818078223607529519187683}{16174745026409120296011360} a^{5} - \frac{7148763305804287969838839}{16174745026409120296011360} a^{4} - \frac{1797186541831279488086987}{16174745026409120296011360} a^{3} + \frac{310102636776226914246673}{1078316335093941353067424} a^{2} + \frac{144594584494793462201651}{2021843128301140037001420} a + \frac{51469395109883167309969}{557749828496866217103840}$
Class group and class number
$C_{9}$, which has order $9$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48431.5389411 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 3.1.2891.3 x3, \(\Q(\zeta_{7})^+\), 6.0.493114979.2, 6.0.10063571.2 x2, 6.0.493114979.4, 9.3.24162633971.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.10063571.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $59$ | 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 59.6.3.2 | $x^{6} - 3481 x^{2} + 3491443$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |