Normalized defining polynomial
\( x^{18} - 8 x^{17} + 32 x^{16} - 80 x^{15} + 215 x^{14} - 426 x^{13} + 1103 x^{12} - 1508 x^{11} + 3243 x^{10} - 3606 x^{9} + 7335 x^{8} - 6028 x^{7} + 7654 x^{6} - 7690 x^{5} + 3739 x^{4} - 2416 x^{3} + 3272 x^{2} + 1888 x + 944 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-119907013147065124216135739=-\,7^{12}\cdot 59^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{48} a^{10} + \frac{1}{48} a^{9} - \frac{1}{16} a^{8} - \frac{1}{24} a^{7} - \frac{1}{8} a^{6} - \frac{1}{24} a^{5} + \frac{3}{16} a^{4} - \frac{5}{16} a^{3} - \frac{19}{48} a^{2} + \frac{1}{3} a + \frac{1}{12}$, $\frac{1}{48} a^{11} - \frac{1}{12} a^{9} + \frac{1}{48} a^{8} - \frac{1}{12} a^{7} + \frac{1}{12} a^{6} + \frac{11}{48} a^{5} - \frac{1}{12} a^{3} - \frac{13}{48} a^{2} + \frac{1}{4} a - \frac{1}{12}$, $\frac{1}{96} a^{12} - \frac{1}{96} a^{10} + \frac{1}{24} a^{9} - \frac{1}{96} a^{8} - \frac{1}{48} a^{7} + \frac{5}{96} a^{6} - \frac{3}{16} a^{5} + \frac{11}{96} a^{4} + \frac{1}{48} a^{3} + \frac{1}{32} a^{2} - \frac{5}{12} a - \frac{1}{8}$, $\frac{1}{384} a^{13} - \frac{1}{128} a^{11} + \frac{9}{128} a^{9} - \frac{5}{48} a^{8} - \frac{1}{128} a^{7} + \frac{23}{192} a^{6} - \frac{17}{128} a^{5} + \frac{7}{192} a^{4} + \frac{47}{384} a^{3} + \frac{79}{192} a^{2} - \frac{31}{96} a - \frac{7}{48}$, $\frac{1}{384} a^{14} + \frac{1}{384} a^{12} - \frac{1}{384} a^{10} - \frac{1}{8} a^{9} - \frac{31}{384} a^{8} - \frac{5}{192} a^{7} + \frac{17}{384} a^{6} + \frac{43}{192} a^{5} - \frac{29}{384} a^{4} - \frac{73}{192} a^{3} - \frac{5}{48} a^{2} + \frac{7}{16} a - \frac{3}{8}$, $\frac{1}{384} a^{15} + \frac{1}{192} a^{11} - \frac{5}{192} a^{9} - \frac{3}{64} a^{8} + \frac{5}{96} a^{7} + \frac{5}{48} a^{6} + \frac{11}{192} a^{5} - \frac{1}{24} a^{4} + \frac{19}{128} a^{3} + \frac{29}{192} a^{2} + \frac{43}{96} a - \frac{17}{48}$, $\frac{1}{3072} a^{16} + \frac{1}{1024} a^{15} + \frac{1}{1536} a^{14} + \frac{1}{3072} a^{13} - \frac{1}{768} a^{12} + \frac{11}{3072} a^{11} - \frac{1}{768} a^{10} - \frac{181}{3072} a^{9} - \frac{9}{128} a^{8} + \frac{349}{3072} a^{7} - \frac{85}{1536} a^{6} - \frac{749}{3072} a^{5} - \frac{233}{1024} a^{4} - \frac{5}{24} a^{3} + \frac{49}{384} a^{2} + \frac{27}{64} a - \frac{31}{192}$, $\frac{1}{41294861032928256} a^{17} + \frac{395694981319}{13764953677642752} a^{16} + \frac{267362546401}{397065971470464} a^{15} - \frac{20281716416587}{41294861032928256} a^{14} - \frac{1321429992983}{6882476838821376} a^{13} + \frac{4894167729147}{4588317892547584} a^{12} + \frac{145356325799989}{20647430516464128} a^{11} + \frac{281152194398003}{41294861032928256} a^{10} + \frac{2577824065925027}{20647430516464128} a^{9} + \frac{3881235871903709}{41294861032928256} a^{8} + \frac{347657606343785}{5161857629116032} a^{7} - \frac{328314966793061}{3176527771763712} a^{6} + \frac{367689592415521}{13764953677642752} a^{5} - \frac{3973026479875811}{20647430516464128} a^{4} - \frac{1206527885901937}{2580928814558016} a^{3} + \frac{261532532571893}{860309604852672} a^{2} + \frac{17669899645049}{2580928814558016} a - \frac{369233647150025}{1290464407279008}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 361929.852547 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-59}) \), 3.1.2891.1 x3, 3.1.2891.3 x3, 3.1.59.1 x3, 3.1.2891.2 x3, 6.0.493114979.3, 6.0.493114979.2, 6.0.205379.1, 6.0.493114979.1, 9.1.1425595404289.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |