Normalized defining polynomial
\( x^{18} + 37 x^{16} + 518 x^{14} + 3515 x^{12} + 12284 x^{10} + 22200 x^{8} + 20683 x^{6} + 9287 x^{4} + 1591 x^{2} + 37 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-119665574759900159778264689410048=-\,2^{18}\cdot 37^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(148=2^{2}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{148}(1,·)$, $\chi_{148}(67,·)$, $\chi_{148}(9,·)$, $\chi_{148}(11,·)$, $\chi_{148}(115,·)$, $\chi_{148}(145,·)$, $\chi_{148}(3,·)$, $\chi_{148}(139,·)$, $\chi_{148}(27,·)$, $\chi_{148}(95,·)$, $\chi_{148}(33,·)$, $\chi_{148}(99,·)$, $\chi_{148}(81,·)$, $\chi_{148}(49,·)$, $\chi_{148}(147,·)$, $\chi_{148}(53,·)$, $\chi_{148}(137,·)$, $\chi_{148}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{43} a^{14} + \frac{14}{43} a^{10} - \frac{13}{43} a^{8} - \frac{10}{43} a^{6} + \frac{11}{43} a^{4} - \frac{11}{43} a^{2} - \frac{21}{43}$, $\frac{1}{43} a^{15} + \frac{14}{43} a^{11} - \frac{13}{43} a^{9} - \frac{10}{43} a^{7} + \frac{11}{43} a^{5} - \frac{11}{43} a^{3} - \frac{21}{43} a$, $\frac{1}{2769316831} a^{16} + \frac{31484785}{2769316831} a^{14} - \frac{1186318945}{2769316831} a^{12} + \frac{28402830}{2769316831} a^{10} + \frac{454901551}{2769316831} a^{8} + \frac{552171309}{2769316831} a^{6} - \frac{1045941801}{2769316831} a^{4} - \frac{852680188}{2769316831} a^{2} - \frac{7266499}{2769316831}$, $\frac{1}{2769316831} a^{17} + \frac{31484785}{2769316831} a^{15} - \frac{1186318945}{2769316831} a^{13} + \frac{28402830}{2769316831} a^{11} + \frac{454901551}{2769316831} a^{9} + \frac{552171309}{2769316831} a^{7} - \frac{1045941801}{2769316831} a^{5} - \frac{852680188}{2769316831} a^{3} - \frac{7266499}{2769316831} a$
Class group and class number
$C_{1526}$, which has order $1526$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 409151.310213 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-37}) \), 3.3.1369.1, 6.0.4438013248.1, 9.9.3512479453921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | $18$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||