Normalized defining polynomial
\( x^{18} - 7 x^{17} + 39 x^{16} - 122 x^{15} + 519 x^{14} - 1965 x^{13} + 9993 x^{12} - 37201 x^{11} + 143358 x^{10} - 436376 x^{9} + 1381097 x^{8} - 3591517 x^{7} + 9385751 x^{6} - 19663227 x^{5} + 40163743 x^{4} - 61821841 x^{3} + 90274691 x^{2} - 80448578 x + 66363211 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-11911501053328835794135616273165234176=-\,2^{12}\cdot 19^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $114.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{134757098521903121298653186739229163458255475648983} a^{17} + \frac{21112381010721013029330150098109003239340709201288}{134757098521903121298653186739229163458255475648983} a^{16} - \frac{32412597879612001829437834504694202132230302146320}{134757098521903121298653186739229163458255475648983} a^{15} + \frac{45708582039597405123187870391956913703722677160047}{134757098521903121298653186739229163458255475648983} a^{14} - \frac{47364665144425202526044356444027603758609035850602}{134757098521903121298653186739229163458255475648983} a^{13} + \frac{57531822390392997145390537754289508001804865955234}{134757098521903121298653186739229163458255475648983} a^{12} + \frac{66522085907635071677549782943134030813868150692999}{134757098521903121298653186739229163458255475648983} a^{11} + \frac{25554017965273786275884064681121165630354400147116}{134757098521903121298653186739229163458255475648983} a^{10} - \frac{29295904517059008217026918352525695092001573332715}{134757098521903121298653186739229163458255475648983} a^{9} + \frac{2326178668616546269647909144021647790138895615635}{134757098521903121298653186739229163458255475648983} a^{8} + \frac{27382403772286236651641881106125048335397280258039}{134757098521903121298653186739229163458255475648983} a^{7} - \frac{23382147616781936554081749828595504703809400744963}{134757098521903121298653186739229163458255475648983} a^{6} + \frac{13684159301517258049719238106292760389084945634619}{134757098521903121298653186739229163458255475648983} a^{5} + \frac{57966925743998708972957626954888245737109964206649}{134757098521903121298653186739229163458255475648983} a^{4} - \frac{9370833302393548603232875302641322176005150528727}{134757098521903121298653186739229163458255475648983} a^{3} + \frac{59073394141836600480012869630808215706321641264609}{134757098521903121298653186739229163458255475648983} a^{2} + \frac{66091742932428775816216341191793798044510822106633}{134757098521903121298653186739229163458255475648983} a + \frac{8117831823245415800833367026784459311705419235865}{134757098521903121298653186739229163458255475648983}$
Class group and class number
$C_{2}\times C_{2}\times C_{37386}$, which has order $149544$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615797.1340659427 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.3.1369.1, 3.3.148.1, 6.0.12854870299.1, 6.0.150239536.1, 9.9.6075640136512.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.12.6.1 | $x^{12} + 41154 x^{6} - 2476099 x^{2} + 423412929$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |